Advertisement

Patients with multiple myeloma and monoclonal gammopathy of undetermined significance have variably increased thrombin generation and different sensitivity to the anticoagulant effect of activated protein C

      Abstract

      Background

      Patients with multiple myeloma (MM) are at high risk of thrombosis especially when receiving immunomodulatory therapy. Thrombotic risk in patients with monoclonal gammopathy of undetermined significance (MGUS) may also be increased. Although activated protein C (APC) resistance has been linked to an increased risk of thrombosis in MM, little is known about how APC influences thrombotic risk in MGUS. We compared thrombin generation (TG) in MM and MGUS patients to that of healthy controls (HCs) and investigated the exogenous effect of APC on TG in these groups.

      Methods

      Hemostasis tests including factor VIII (FVIII) and von Willebrand factor (vWF) levels were measured in platelet-poor plasma in 14 untreated MM patients, 34 MGUS patients, and 30 age and sex-matched HCs. TG assay was performed with or without the addition of APC.

      Results

      Peak thrombin and velocity index were significantly higher in MM and MGUS patients compared to HCs, while MM patients also had elevated endogenous thrombin potential (ETP). In MGUS cases, ETP and peak thrombin values significantly correlated with FVIII and vWF levels. In the presence of APC, peak thrombin and ETP were reduced in MGUS and control plasmas whereas lagtime and time to peak were significantly prolonged. In contrast, adding APC to MM plasma had no effect on any TG parameters.

      Conclusions

      Hypercoagulability was observed in MM and even in MGUS cases with very low monoclonal protein concentration. In MM patients, APC had no effect on TG, but it attenuated TG in MGUS patients.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Thrombosis Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rao B.Bhagya
        • Kalayarasan R.
        • Kate V.
        • Ananthakrishnan N.
        Venous thromboembolism in cancer patients undergoing major abdominal surgery: prevention and management.
        ISRN Vasc. Med. 2012; 2012: 1-22https://doi.org/10.5402/2012/783214
        • Sallah S.
        • Wan J.Y.
        • Nguyen N.P.
        Venous thrombosis in patients with solid tumors: determination of frequency and characteristics.
        Thromb. Haemost. 2002; 87: 575-579https://doi.org/10.1055/s-0037-1613051
        • Donnellan E.
        • Khorana A.A.
        Cancer and venous thromboembolic disease: a review.
        Oncologist. 2017; 22: 199-207https://doi.org/10.1634/theoncologist.2016-0214
        • Lee A.Y.Y.
        • Levine M.N.
        Venous thromboembolism and cancer: risks and outcomes.
        Circulation. 2003; 107https://doi.org/10.1161/01.CIR.0000078466.72504.AC
        • Walker A.J.
        • Card T.R.
        • West J.
        • Crooks C.
        • Grainge M.J.
        Incidence of venous thromboembolism in patients with cancer-a cohort study using linked United Kingdom databases.
        Eur. J. Cancer. 2013; 49: 1404-1413https://doi.org/10.1016/j.ejca.2012.10.021
        • Kristinsson S.Y.
        • et al.
        Deep vein thrombosis after monoclonal gammopathy of undetermined significance and multiple myeloma.
        Blood. 2008; 112: 3582-3586https://doi.org/10.1182/blood-2008-04-151076
        • Leebeek F.W.G.
        • Kruip M.J.H.A.
        • Sonneveld P.
        PL-17 risk and management of thrombosis in multiple myeloma.
        Thromb. Res. 2012; 129: S88-S92https://doi.org/10.1016/S0049-3848(12)70024-5
        • Zangari M.
        • Elice F.
        • Fink L.
        • Tricot G.
        Thrombosis in multiple myeloma.
        Expert. Rev. Anticancer. Ther. 2007; 7: 307-315https://doi.org/10.1586/14737140.7.3.307
        • Mateos M.V.
        Management of treatment-related adverse events in patients with multiple myeloma.
        Cancer Treat. Rev. 2010; 36: 24-32https://doi.org/10.1016/S0305-7372(10)70009-8
        • Libourel E.J.
        • Sonneveld P.
        • Der Van Holt B.
        • De Maat M.P.M.
        • Leebeek F.W.G.
        High incidence of arterial thrombosis in young patients treated for multiple myeloma: results of a prospective cohort study.
        Blood. 2010; 116: 22-26https://doi.org/10.1182/blood-2009-12-257519
        • Zamagni E.
        • Brioli A.
        • Tacchetti P.
        • Zannetti B.
        • Pantani L.
        • Cavo M.
        Multiple myeloma, venous thromboembolism, and treatment-related risk of thrombosis.
        Semin. Thromb. Hemost. 2011; 37: 209-219https://doi.org/10.1055/s-0031-1273085
        • Zangari M.
        • Fink L.
        • Zhan F.
        • Tricot G.
        Low venous thromboembolic risk with bortezomib in multiple myeloma and potential protective effect with thalidomide/lenalidomide-based therapy: review of data from phase 3 trials and studies of novel combination regimens.
        Clin. Lymphoma, Myeloma Leuk. 2011; 11: 228-236https://doi.org/10.1016/j.clml.2011.03.006
        • Ghansah H.
        • Debreceni I.B.
        • Fejes Z.
        • Nagy B.
        • Kappelmayer J.
        The proteasome inhibitor bortezomib induces apoptosis and activation in gel-filtered human platelets.
        Int. J. Mol. Sci. 2021; 22: 8955https://doi.org/10.3390/ijms22168955
        • Kristinsson S.Y.
        • Pfeiffer R.M.
        • Björkholm M.
        • Schulman S.
        • Landgren O.
        Thrombosis is associated with inferior survival in multiple myeloma.
        Haematologica. 2012; 97: 1603-1607https://doi.org/10.3324/haematol.2012.064444
        • Landgren O.
        • et al.
        Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study.
        Blood. 2009; 113: 5412-5417https://doi.org/10.1182/blood-2008-12-194241
        • Weiss B.M.
        • Abadie J.
        • Verma P.
        • Howard R.S.
        • Kuehl W.M.
        A monoclonal gammopathy precedes multiple myeloma in most patients.
        Blood. 2009; 113: 5418-5422https://doi.org/10.1182/blood-2008-12-195008
        • Kyle R.A.
        • et al.
        A long-term study of prognosis in monoclonal gammopathy of undetermined significance.
        N. Engl. J. Med. 2002; 346: 564-569https://doi.org/10.1056/NEJMoa01133202
        • Kazandjian D.
        Multiple myeloma epidemiology and survival: a unique malignancy.
        Semin. Oncol. 2016; 43: 676-681https://doi.org/10.1053/j.seminoncol.2016.11.004
        • Rajkumar S.V.
        • et al.
        International myeloma working group updated criteria for the diagnosis of multiple myeloma.
        Lancet Oncol. 2014; 15: e538-e548https://doi.org/10.1016/S1470-2045(14)70442-5
        • Gregersen H.
        • Nørgaard M.
        • Severinsen M.T.
        • Engebjerg M.C.
        • Jensen P.
        • Sørensen H.T.
        Monoclonal gammopathy of undetermined significance and risk of venous thromboembolism.
        Eur. J. Haematol. 2011; 86: 129-134https://doi.org/10.1111/j.1600-0609.2010.01539.x
        • Muslimani A.A.
        • et al.
        Venous thromboembolism (VTE) in patients (pts.) with monoclonal gammopathy of undetermined significance (MGUS).
        Blood. 2008; 112: 5340https://doi.org/10.1182/blood.v112.11.5340.5340
        • Sallah S.
        • Husain A.
        • Wan J.
        • Vos P.
        • Nguyen N.P.
        The risk of venous thromboembolic disease in patients with monoclonal gammopathy of undetermined significance.
        Ann. Oncol. 2004; 15: 1490-1494https://doi.org/10.1093/annonc/mdh385
        • Srkalovic G.
        • Cameron M.G.
        • Rybicki L.
        • Deitcher S.R.
        • Kattke-Marchant K.
        • Hussein M.A.
        Monoclonal gammopathy of undetermined significance and multiple myeloma are associated with an increased incidence of venothromboembolic disease.
        Cancer. 2004; 101: 558-566https://doi.org/10.1002/cncr.20405
        • Bida J.P.
        • et al.
        Disease associations with monoclonal gammopathy of undetermined significance: a population-based study of 17,398 patients.
        Mayo Clin. Proc. 2009; 84: 685-693https://doi.org/10.4065/84.8.685
        • Cohen A.L.
        • Sarid R.
        The relationship between monoclonal gammopathy of undetermined significance and venous thromboembolic disease.
        Thromb. Res. 2010; 125: 216-219https://doi.org/10.1016/j.thromres.2009.01.004
        • Za T.
        • et al.
        Arterial and venous thrombosis in patients with monoclonal gammopathy of undetermined significance: incidence and risk factors in a cohort of 1491 patients.
        Br. J. Haematol. 2013; 160: 673-679https://doi.org/10.1111/bjh.12168
        • Kerr R.
        • Stirling D.
        • Ludlam C.A.
        Interleukin 6 and haemostasis.
        Br. J. Haematol. 2001; 115: 3-12https://doi.org/10.1046/j.1365-2141.2001.03061.x
        • Uaprasert N.
        • Voorhees P.M.
        • Mackman N.
        • Key N.S.
        Venous thromboembolism in multiple myeloma: current perspectives in pathogenesis.
        Eur. J. Cancer. 2010; 46: 1790-1799https://doi.org/10.1016/j.ejca.2010.03.007
        • Carr M.E.
        • Zekert S.L.
        Abnormal clot retraction, altered fibrin structure, and normal platelet function in multiple myeloma.
        Am. J. Physiol. Hear. Circ. Physiol. 1994; 266: 33-35https://doi.org/10.1152/ajpheart.1994.266.3.h1195
        • Carr M.E.
        • Dent R.M.
        • Carr S.L.
        Abnormal fibrin structure and inhibition of fibrinolysis in patients with multiple myeloma.
        J. Lab. Clin. Med. 1996; 128: 83-88https://doi.org/10.1016/S0022-2143(96)90116-X
        • Yasin Z.
        • Quick D.
        • Thiagarajan P.
        • Spoor D.
        • Caraveo J.
        • Palascak J.
        Light-chain paraproteins with lupus anticoagulant activity.
        Am. J. Hematol. 1999; 62: 99-102
        • Elice F.
        • Fink L.
        • Tricot G.
        • Barlogie B.
        • Zangari M.
        Acquired resistance to activated protein C (aAPCR) in multiple myeloma is a transitory abnormality associated with an increased risk of venous thromboembolism.
        Br. J. Haematol. 2006; 134: 399-405https://doi.org/10.1111/j.1365-2141.2006.06208.x
        • Undas A.
        • et al.
        Altered plasma fibrin clot properties and fibrinolysis in patients with multiple myeloma.
        Eur. J. Clin. Investig. 2014; 44: 557-566https://doi.org/10.1111/eci.12269
        • Auwerda J.J.A.
        • Sonneveld P.
        • De Maat M.P.M.
        • Leebeek F.W.G.
        Prothrombotic coagulation abnormalities in patients with newly diagnosed multiple myeloma.
        Haematologica. 2007; 92: 279-280https://doi.org/10.3324/haematol.10454
        • Eby C.S.
        Bleeding and thrombosis risks in plasma cell dyscrasias.
        Hematol. Am. Soc. Hematol. Educ. Progr. 2007; : 158-164https://doi.org/10.1182/asheducation-2007.1.158
        • Minnema M.C.
        • Fijnheer R.
        • De Groot P.G.
        • Lokhorst H.M.
        Extremely high levels of von willebrand factor antigen and of procoagulant factor VIII found in multiple myeloma patients are associated with activity status but not with thalidomide treatment.
        J. Thromb. Haemost. 2003; 1: 445-449https://doi.org/10.1046/j.1538-7836.2003.00083.x
        • van Marion A.M.W.
        • et al.
        Prospective evaluation of coagulopathy in multiple myeloma patients before, during and after various chemotherapeutic regimens.
        Leuk. Res. 2008; 32: 1078-1084https://doi.org/10.1016/j.leukres.2007.12.002
        • Kristinsson S.Y.
        • Björkholm M.
        • Schulman S.
        • Landgren O.
        Hypercoagulability in multiple myeloma and its precursor state, monoclonal gammopathy of undetermined significance.
        Semin. Hematol. 2011; 48: 46-54https://doi.org/10.1053/j.seminhematol.2010.11.002
        • Gracheva M.A.
        • et al.
        Thromboelastography, thrombin generation test and thrombodynamics reveal hypercoagulability in patients with multiple myeloma.
        Leuk. Lymphoma. 2015; 56: 3418-3425https://doi.org/10.3109/10428194.2015.1041385
        • Baccouche H.
        • et al.
        The hypercoagulable state in multiple myeloma: the contribution of thrombin generation test.
        Int. J. Lab. Hematol. 2019; 41: 684-690https://doi.org/10.1111/ijlh.13093
        • Besser M.
        • Baglin C.
        • Luddington R.
        • Van Hylckama Vlieg A.
        • Baglin T.
        High rate of unprovoked recurrent venous thrombosis is associated with high thrombin-generating potential in a prospective cohort study.
        J. Thromb. Haemost. 2008; 6: 1720-1725https://doi.org/10.1111/j.1538-7836.2008.03117.x
        • Van Hylckama Vlieg A.
        • Christiansen S.C.
        • Luddington R.
        • Cannegieter S.C.
        • Rosendaal F.R.
        • Baglin T.P.
        Elevated endogenous thrombin potential is associated with an increased risk of a first deep venous thrombosis but not with the risk of recurrence.
        Br. J. Haematol. 2007; 138: 769-774https://doi.org/10.1111/j.1365-2141.2007.06738.x
        • Tripodi A.
        • Legnani C.
        • Chantarangkul V.
        • Cosmi B.
        • Palareti G.
        • Mannucci P.M.
        High thrombin generation measured in the presence of thrombomodulin is associated with an increased risk of recurrent venous thromboembolism.
        J. Thromb. Haemost. 2008; 6: 1327-1333https://doi.org/10.1111/j.1538-7836.2008.03018.x
        • Crowley M.P.
        • et al.
        Plasma thrombin generation and sensitivity to activated protein C among patients with myeloma and monoclonal gammopathy of undetermined significance.
        Clin. Appl. Thromb. 2016; 22: 554-562https://doi.org/10.1177/1076029615625825
        • Tiong I.S.
        • Rodgers S.E.
        • Lee C.H.S.
        • McRae S.J.
        Baseline and treatment-related changes in thrombin generation in patients with multiple myeloma.
        Leuk. Lymphoma. 2017; 58: 941-949https://doi.org/10.1080/10428194.2016.1219900
        • Nielsen T.
        • Kristensen S.R.
        • Gregersen H.
        • Teodorescu E.M.
        • Pedersen S.
        Prothrombotic abnormalities in patients with multiple myeloma and monoclonal gammopathy of undetermined significance.
        Thromb. Res. 2021; 202: 108-118https://doi.org/10.1016/j.thromres.2021.03.015
        • Leiba M.
        • et al.
        Thrombin generation as a predictor of thromboembolic events in multiple myeloma patients.
        Blood Cells Mol. Dis. 2017; 65: 1-7https://doi.org/10.1016/j.bcmd.2017.03.010
        • Chalayer E.
        • et al.
        Thrombin generation in newly diagnosed multiple myeloma during the first three cycles of treatment: an observational cohort study.
        Res. Pract. Thromb. Haemost. 2019; 3: 89-98https://doi.org/10.1002/rth2.12161
        • Sarig G.
        • Michaeli Y.
        • Lanir N.
        • Brenner B.
        • Haim N.
        Mechanisms for acquired activated protein C resistance in cancer patients [1].
        J. Thromb. Haemost. 2005; 3: 589-590https://doi.org/10.1111/j.1538-7836.2005.01168.x
        • Haim N.
        • Lanir N.
        • Hoffman R.
        • Haim A.
        • Tsalik M.
        • Brenner B.
        Acquired activated protein C resistance is common in cancer patients and is associated with venous thromboembolism.
        Am. J. Med. 2001; 110: 91-96https://doi.org/10.1016/S0002-9343(00)00691-4
        • Greipp P.R.
        • et al.
        International staging system for multiple myeloma.
        J. Clin. Oncol. 2005; 23: 3412-3420https://doi.org/10.1200/JCO.2005.04.242
        • Fotiou D.
        • et al.
        Longer procoagulant phospholipid-dependent clotting time, lower endogenous thrombin potential and higher tissue factor pathway inhibitor concentrations are associated with increased VTE occurrence in patients with newly diagnosed multiple myeloma: results.
        Blood Cancer J. 2018; 8: pphttps://doi.org/10.1038/s41408-018-0135-y
        • Legendre P.
        • et al.
        Hypocoagulability as assessed by thrombin generation test in newly-diagnosed patients with multiple myeloma.
        Blood Cells Mol. Dis. 2017; 66: 47-49https://doi.org/10.1016/j.bcmd.2017.08.011
        • Jiménez-Zepeda V.H.
        • Domínguez-Martínez V.J.
        Acquired activated protein C resistance and thrombosis in multiple myeloma patients.
        Thromb. J. 2006; vol. 4, no. Mm: 1-6https://doi.org/10.1186/1477-9560-4-11
        • Kraaijenhagen R.A.
        • et al.
        High plasma concentration of factor VIIIc is a major risk factor for venous thromboembolism.
        Thromb. Haemost. 2000; 83: 5-9https://doi.org/10.1055/s-0037-1613747
        • Kyrle P.A.
        • et al.
        High plasma levels of factor VIII and the risk of recurrent venous thromboembolism.
        N. Engl. J. Med. 2000; 343: 457-462https://doi.org/10.1056/nejm200008173430702
        • Kamphuisen P.W.
        • et al.
        High factor VIII antigen levels increase the risk of venous thrombosis but are not associated with polymorphisms in the von willebrand factor and factor VIII gene.
        Br. J. Haematol. 2001; 115: 156-158https://doi.org/10.1046/j.1365-2141.2001.03089.x
        • Rajpal S.
        • Ahluwalia J.
        • Kumar N.
        • Malhotra P.
        • Uppal V.
        Elevated Von willebrand factor antigen levels are an independent risk factor for venous thromboembolism: first report from North India.
        Indian J. Hematol. Blood Transfus. 2019; 35: 489-495https://doi.org/10.1007/s12288-019-01092-y
        • Auwerda J.J.A.
        • Sonneveld P.
        • De Maat M.P.M.
        • Leebeek F.W.G.
        Prothrombotic coagulation abnormalities in patients with paraprotein-producing B-cell disorders.
        Clin. Lymphoma Myeloma. 2007; 7: 462-466https://doi.org/10.3816/CLM.2007.n.027
        • Vacca A.
        • Ribatti D.
        Bone marrow angiogenesis in multiple myeloma.
        Leukemia. 2006; 20: 193-199https://doi.org/10.1038/sj.leu.2404067
        • Rajkumar S.V.
        • et al.
        Bone marrow angiogenesis in 400 patients with monoclonal gammopathy of undetermined significance, multiple myeloma, and primary amyloidosis.
        Clin. Cancer Res. 2002; 8: 2210-2216