Advertisement

Platelet intrinsic apoptosis

  • Emma C. Josefsson
    Correspondence
    University Hospital, Department of Clinical Chemistry, Bruna stråket 16, 413 45 Gothenburg, Sweden.
    Affiliations
    Sahlgrenska University Hospital, Department of Clinical Chemistry, Gothenburg, Sweden
    The University of Gothenburg, Department of Laboratory Medicine, Institute of Biomedicine, Gothenburg, Sweden
    The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, VIC 3052, Australia
    The University of Melbourne, Department of Medical Biology, 1G Royal Parade, VIC 3052, Australia
    Search for articles by this author
Published:December 12, 2022DOI:https://doi.org/10.1016/j.thromres.2022.11.024

      Abstract

      In a healthy individual, the lifespan of most platelets is tightly regulated by intrinsic, or mitochondrial, apoptosis. This is a special form of programmed cell death governed by the BCL-2 family of proteins, where the prosurvival protein BCL-XL maintains platelet viability by restraining the prodeath proteins BAK and BAX. Restriction of platelet lifespan by activation of BAK and BAX mediated intrinsic apoptosis is essential to maintain a functional, haemostatically reactive platelet population. This review focuses on the molecular regulation of intrinsic apoptosis in platelets, reviews conditions linked to enhanced platelet death, discusses ex vivo storage of platelets and describes caveats associated with the assessment of platelet apoptosis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Thrombosis Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Weyrich A.S.
        Platelets: more than a sack of glue.
        Hematology. 2014; 2014: 400-403https://doi.org/10.1182/asheducation-2014.1.400
        • Ault K.A.
        • Knowles C.
        In vivo biotinylation demonstrates that reticulated platelets are the youngest platelets in circulation.
        Exp. Hematol. 1995; 23: 996-1001
        • Dale G.L.
        • Friese P.
        • Hynes L.A.
        • Burstein S.A.
        Demonstration that thiazole-orange-positive platelets in the dog are less than 24 hours old.
        Blood. 1995; 85: 1822-1825
        • Leeksma C.H.
        • Cohen J.A.
        Determination of the life of human blood platelets using labelled diisopropylfluorophosphanate.
        Nature. 1955; 175: 552-553https://doi.org/10.1038/175552b0
        • Lee-Sundlov M.M.
        • Rivadeneyra L.
        • Falet H.
        • Hoffmeister K.M.
        Sialic acid and platelet count regulation: implications in immune thrombocytopenia.
        Res. Pract. Thromb. Haemost. 2022; 6e12691https://doi.org/10.1002/rth2.12691
        • Czabotar P.E.
        • Lessene G.
        • Strasser A.
        • Adams J.M.
        Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy.
        Nat. Rev. Mol. Cell Biol. 2014; 15: 49-63https://doi.org/10.1038/nrm3722
        • Josefsson E.C.
        • Kile B.T.
        Cell death in the hematopoietic system.
        in: Yin X.-M. Dong Z. Essentials of Apoptosis. Second edn. Humana Press, Springer, 2009: 443-459
        • Kerr J.F.
        • Wyllie A.H.
        • Currie A.R.
        Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics.
        Br. J. Cancer. 1972; 26: 239-257
        • Linkermann A.
        • Green D.R.
        Necroptosis.
        N. Engl. J. Med. 2014; 370: 455-465https://doi.org/10.1056/NEJMra1310050
        • Kovacs S.B.
        • Miao E.A.
        Gasdermins: effectors of pyroptosis.
        Trends Cell Biol. 2017; 27: 673-684https://doi.org/10.1016/j.tcb.2017.05.005
        • Fearnhead H.O.
        • Vandenabeele P.
        • Vanden Berghe T.
        How do we fit ferroptosis in the family of regulated cell death?.
        Cell Death Differ. 2017; 24: 1991-1998https://doi.org/10.1038/cdd.2017.149
        • Kuwana T.
        • Bouchier-Hayes L.
        • Chipuk J.E.
        • Bonzon C.
        • Sullivan B.A.
        • Green D.R.
        • Newmeyer D.D.
        BH3 domains of BH3-only proteins differentially regulate bax-mediated mitochondrial membrane permeabilization both directly and indirectly.
        Mol. Cell. 2005; 17: 525-535https://doi.org/10.1016/j.molcel.2005.02.003
        • Ren D.
        • Tu H.C.
        • Kim H.
        • Wang G.X.
        • Bean G.R.
        • Takeuchi O.
        • Jeffers J.R.
        • Zambetti G.P.
        • Hsieh J.J.
        • Cheng E.H.
        BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program.
        Science (New York, N.Y.). 2010; 330: 1390-1393https://doi.org/10.1126/science.1190217
        • Villunger A.
        • Labi V.
        • Bouillet P.
        • Adams J.
        • Strasser A.
        Can the analysis of BH3-only protein knockout mice clarify the issue of 'direct versus indirect' activation of bax and Bak?.
        Cell Death Differ. 2011; 18: 1545-1546https://doi.org/10.1038/cdd.2011.100
        • Willis S.N.
        • Fletcher J.I.
        • Kaufmann T.
        • van Delft M.F.
        • Chen L.
        • Czabotar P.E.
        • Ierino H.
        • Lee E.F.
        • Fairlie W.D.
        • Bouillet P.
        • Strasser A.
        • Kluck R.M.
        • Adams J.M.
        • Huang D.C.
        Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not bax or bak.
        Science (New York, N.Y.). 2007; 315: 856-859https://doi.org/10.1126/science.1133289
        • Suzuki J.
        • Denning D.P.
        • Imanishi E.
        • Horvitz H.R.
        • Nagata S.
        Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells.
        Science (New York, N.Y.). 2013; 341: 403-406https://doi.org/10.1126/science.1236758
        • Scaffidi C.
        • Fulda S.
        • Srinivasan A.
        • Friesen C.
        • Li F.
        • Tomaselli K.J.
        • Debatin K.M.
        • Krammer P.H.
        • Peter M.E.
        Two CD95 (APO-1/Fas) signaling pathways.
        EMBO J. 1998; 17: 1675-1687https://doi.org/10.1093/emboj/17.6.1675
        • Jost P.J.
        • Grabow S.
        • Gray D.
        • McKenzie M.D.
        • Nachbur U.
        • Huang D.C.
        • Bouillet P.
        • Thomas H.E.
        • Borner C.
        • Silke J.
        • Strasser A.
        • Kaufmann T.
        XIAP discriminates between type I and type II FAS-induced apoptosis.
        Nature. 2009; 460: 1035-1039https://doi.org/10.1038/nature08229
        • Ben Amor N.
        • Pariente J.A.
        • Salido G.M.
        • Bartegi A.
        • Rosado J.A.
        Caspases 3 and 9 are translocated to the cytoskeleton and activated by thrombin in human platelets. Evidence for the involvement of PKC and the actin filament polymerization.
        Cell. Signal. 2006; 18: 1252-1261https://doi.org/10.1016/j.cellsig.2005.10.002
        • Leytin V.
        • Allen D.J.
        • Mykhaylov S.
        • Lyubimov E.
        • Freedman J.
        Thrombin-triggered platelet apoptosis.
        J. Thromb. Haemostasis. 2006; 4: 2656-2663https://doi.org/10.1111/j.1538-7836.2006.02200.x
        • Li J.
        • Xia Y.
        • Bertino A.M.
        • Coburn J.P.
        • Kuter D.J.
        The mechanism of apoptosis in human platelets during storage.
        Transfusion. 2000; 40: 1320-1329
        • Vanags D.M.
        • Orrenius S.
        • Aguilar-Santelises M.
        Alterations in Bcl-2/Bax protein levels in platelets form part of an ionomycin-induced process that resembles apoptosis.
        Br. J. Haematol. 1997; 99: 824-831
        • Wolf B.B.
        • Goldstein J.C.
        • Stennicke H.R.
        • Beere H.
        • Amarante-Mendes G.P.
        • Salvesen G.S.
        • Green D.R.
        Calpain functions in a caspase-independent manner to promote apoptosis-like events during platelet activation.
        Blood. 1999; 94: 1683-1692
        • Mason K.D.
        • Carpinelli M.R.
        • Fletcher J.I.
        • Collinge J.E.
        • Hilton A.A.
        • Ellis S.
        • Kelly P.N.
        • Ekert P.G.
        • Metcalf D.
        • Roberts A.W.
        • Huang D.C.
        • Kile B.T.
        Programmed anuclear cell death delimits platelet life span.
        Cell. 2007; 128: 1173-1186https://doi.org/10.1016/j.cell.2007.01.037
        • Zhang H.
        • Nimmer P.M.
        • Tahir S.K.
        • Chen J.
        • Fryer R.M.
        • Hahn K.R.
        • Iciek L.A.
        • Morgan S.J.
        • Nasarre M.C.
        • Nelson R.
        • Preusser L.C.
        • Reinhart G.A.
        • Smith M.L.
        • Rosenberg S.H.
        • Elmore S.W.
        • Tse C.
        Bcl-2 family proteins are essential for platelet survival.
        Cell Death Differ. 2007; 14: 943-951https://doi.org/10.1038/sj.cdd.4402081
        • Wagner K.U.
        • Claudio E.
        • Rucker 3rd, E.B.
        • Riedlinger G.
        • Broussard C.
        • Schwartzberg P.L.
        • Siebenlist U.
        • Hennighausen L.
        Conditional deletion of the bcl-x gene from erythroid cells results in hemolytic anemia and profound splenomegaly.
        Development (Cambridge, England). 2000; 127: 4949-4958
        • Josefsson E.C.
        • James C.
        • Henley K.J.
        • Debrincat M.A.
        • Rogers K.L.
        • Dowling M.R.
        • White M.J.
        • Kruse E.A.
        • Lane R.M.
        • Ellis S.
        • Nurden P.
        • Mason K.D.
        • O'Reilly L.A.
        • Roberts A.W.
        • Metcalf D.
        • Huang D.C.
        • Kile B.T.
        Megakaryocytes possess a functional intrinsic apoptosis pathway that must be restrained to survive and produce platelets.
        J. Exp. Med. 2011; 208: 2017-2031https://doi.org/10.1084/jem.20110750
        • Kodama T.
        • Takehara T.
        • Hikita H.
        • Shimizu S.
        • Li W.
        • Miyagi T.
        • Hosui A.
        • Tatsumi T.
        • Ishida H.
        • Tadokoro S.
        • Ido A.
        • Tsubouchi H.
        • Hayashi N.
        Thrombocytopenia exacerbates cholestasis-induced liver fibrosis in mice.
        Gastroenterology. 2010; 138 (98 e1–7): 2487-2498https://doi.org/10.1053/j.gastro.2010.02.054
        • Tse C.
        • Shoemaker A.R.
        • Adickes J.
        • Anderson M.G.
        • Chen J.
        • Jin S.
        • Johnson E.F.
        • Marsh K.C.
        • Mitten M.J.
        • Nimmer P.
        • Roberts L.
        • Tahir S.K.
        • Xiao Y.
        • Yang X.
        • Zhang H.
        • Fesik S.
        • Rosenberg S.H.
        • Elmore S.W.
        ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor.
        Cancer Res. 2008; 68: 3421-3428https://doi.org/10.1158/0008-5472.can-07-5836
        • Oltersdorf T.
        • Elmore S.W.
        • Shoemaker A.R.
        • Armstrong R.C.
        • Augeri D.J.
        • Belli B.A.
        • Bruncko M.
        • Deckwerth T.L.
        • Dinges J.
        • Hajduk P.J.
        • Joseph M.K.
        • Kitada S.
        • Korsmeyer S.J.
        • Kunzer A.R.
        • Letai A.
        • Li C.
        • Mitten M.J.
        • Nettesheim D.G.
        • Ng S.
        • Nimmer P.M.
        • O'Connor J.M.
        • Oleksijew A.
        • Petros A.M.
        • Reed J.C.
        • Shen W.
        • Tahir S.K.
        • Thompson C.B.
        • Tomaselli K.J.
        • Wang B.
        • Wendt M.D.
        • Zhang H.
        • Fesik S.W.
        • Rosenberg S.H.
        An inhibitor of Bcl-2 family proteins induces regression of solid tumours.
        Nature. 2005; 435: 677-681https://doi.org/10.1038/nature03579
        • Roberts A.W.
        • Seymour J.F.
        • Brown J.R.
        • Wierda W.G.
        • Kipps T.J.
        • Khaw S.L.
        • Carney D.A.
        • He S.Z.
        • Huang D.C.
        • Xiong H.
        • Cui Y.
        • Busman T.A.
        • McKeegan E.M.
        • Krivoshik A.P.
        • Enschede S.H.
        • Humerickhouse R.
        Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease.
        J. Clin. Oncol. 2012; 30: 488-496https://doi.org/10.1200/jco.2011.34.7898
        • Wilson W.H.
        • O'Connor O.A.
        • Czuczman M.S.
        • LaCasce A.S.
        • Gerecitano J.F.
        • Leonard J.P.
        • Tulpule A.
        • Dunleavy K.
        • Xiong H.
        • Chiu Y.L.
        • Cui Y.
        • Busman T.
        • Elmore S.W.
        • Rosenberg S.H.
        • Krivoshik A.P.
        • Enschede S.H.
        • Humerickhouse R.A.
        Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity.
        Lancet Oncol. 2010; 11: 1149-1159https://doi.org/10.1016/s1470-2045(10)70261-8
        • Schoenwaelder S.M.
        • Yuan Y.
        • Josefsson E.C.
        • White M.J.
        • Yao Y.
        • Mason K.D.
        • O'Reilly L.A.
        • Henley K.J.
        • Ono A.
        • Hsiao S.
        • Willcox A.
        • Roberts A.W.
        • Huang D.C.
        • Salem H.H.
        • Kile B.T.
        • Jackson S.P.
        Two distinct pathways regulate platelet phosphatidylserine exposure and procoagulant function.
        Blood. 2009; 114: 663-666https://doi.org/10.1182/blood-2009-01-200345
        • Vogler M.
        • Hamali H.A.
        • Sun X.M.
        • Bampton E.T.
        • Dinsdale D.
        • Snowden R.T.
        • Dyer M.J.
        • Goodall A.H.
        • Cohen G.M.
        BCL2/BCL-X(L) inhibition induces apoptosis, disrupts cellular calcium homeostasis, and prevents platelet activation.
        Blood. 2011; 117: 7145-7154https://doi.org/10.1182/blood-2011-03-344812
        • Schoenwaelder S.M.
        • Jarman K.E.
        • Gardiner E.E.
        • Hua M.
        • Qiao J.
        • White M.J.
        • Josefsson E.C.
        • Alwis I.
        • Ono A.
        • Willcox A.
        • Andrews R.K.
        • Mason K.D.
        • Salem H.H.
        • Huang D.C.
        • Kile B.T.
        • Roberts A.W.
        • Jackson S.P.
        Bcl-xL-inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets.
        Blood. 2011; 118: 1663-1674https://doi.org/10.1182/blood-2011-04-347849
        • Souers A.J.
        • Leverson J.D.
        • Boghaert E.R.
        • Ackler S.L.
        • Catron N.D.
        • Chen J.
        • Dayton B.D.
        • Ding H.
        • Enschede S.H.
        • Fairbrother W.J.
        • Huang D.C.
        • Hymowitz S.G.
        • Jin S.
        • Khaw S.L.
        • Kovar P.J.
        • Lam L.T.
        • Lee J.
        • Maecker H.L.
        • Marsh K.C.
        • Mason K.D.
        • Mitten M.J.
        • Nimmer P.M.
        • Oleksijew A.
        • Park C.H.
        • Park C.M.
        • Phillips D.C.
        • Roberts A.W.
        • Sampath D.
        • Seymour J.F.
        • Smith M.L.
        • Sullivan G.M.
        • Tahir S.K.
        • Tse C.
        • Wendt M.D.
        • Xiao Y.
        • Xue J.C.
        • Zhang H.
        • Humerickhouse R.A.
        • Rosenberg S.H.
        • Elmore S.W.
        ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets.
        Nat. Med. 2013; 19: 202-208https://doi.org/10.1038/nm.3048
        • Bertino A.M.
        • Qi X.Q.
        • Li J.
        • Xia Y.
        • Kuter D.J.
        Apoptotic markers are increased in platelets stored at 37 degrees C.
        Transfusion. 2003; 43: 857-866
        • Debrincat M.A.
        • Pleines I.
        • Lebois M.
        • Lane R.M.
        • Holmes M.L.
        • Corbin J.
        • Vandenberg C.J.
        • Alexander W.S.
        • Ng A.P.
        • Strasser A.
        • Bouillet P.
        • Sola-Visner M.
        • Kile B.T.
        • Josefsson E.C.
        BCL-2 is dispensable for thrombopoiesis and platelet survival.
        Cell Death Dis. 2015; 6e1721https://doi.org/10.1038/cddis.2015.97
        • Kodama T.
        • Takehara T.
        • Hikita H.
        • Shimizu S.
        • Shigekawa M.
        • Li W.
        • Miyagi T.
        • Hosui A.
        • Tatsumi T.
        • Ishida H.
        • Kanto T.
        • Hiramatsu N.
        • Yin X.M.
        • Hayashi N.
        BH3-only activator proteins bid and bim are dispensable for Bak/Bax-dependent thrombocyte apoptosis induced by bcl-xL deficiency: molecular requisites for the mitochondrial pathway to apoptosis in platelets.
        J. Biol. Chem. 2011; 286: 13905-13913https://doi.org/10.1074/jbc.M110.195370
        • Li S.
        • Wang Z.
        • Liao Y.
        • Zhang W.
        • Shi Q.
        • Yan R.
        • Ruan C.
        • Dai K.
        The glycoprotein ibalpha-von willebrand factor interaction induces platelet apoptosis.
        J. Thromb. Haemostasis. 2010; 8: 341-350https://doi.org/10.1111/j.1538-7836.2009.03653.x
        • Liu Z.J.
        • Hoffmeister K.M.
        • Hu Z.
        • Mager D.E.
        • Ait-Oudhia S.
        • Debrincat M.A.
        • Pleines I.
        • Josefsson E.C.
        • Kile B.T.
        • Italiano Jr., J.
        • Ramsey H.
        • Grozovsky R.
        • Veng-Pedersen P.
        • Chavda C.
        • Sola-Visner M.
        Expansion of the neonatal platelet mass is achieved via an extension of platelet lifespan.
        Blood. 2014; 123: 3381-3389https://doi.org/10.1182/blood-2013-06-508200
        • Vandenberg C.J.
        • Josefsson E.C.
        • Campbell K.J.
        • James C.
        • Lawlor K.E.
        • Kile B.T.
        • Cory S.
        Loss of bak enhances lymphocytosis but does not ameliorate thrombocytopaenia in BCL-2 transgenic mice.
        Cell Death Differ. 2014; 21: 676-684https://doi.org/10.1038/cdd.2013.201
        • Lindsten T.
        • Ross A.J.
        • King A.
        • Zong W.X.
        • Rathmell J.C.
        • Shiels H.A.
        • Ulrich E.
        • Waymire K.G.
        • Mahar P.
        • Frauwirth K.
        • Chen Y.
        • Wei M.
        • Eng V.M.
        • Adelman D.M.
        • Simon M.C.
        • Ma A.
        • Golden J.A.
        • Evan G.
        • Korsmeyer S.J.
        • MacGregor G.R.
        • Thompson C.B.
        The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues.
        Mol. Cell. 2000; 6: 1389-1399
        • Gieger C.
        • Radhakrishnan A.
        • Cvejic A.
        • Tang W.
        • Porcu E.
        • Pistis G.
        • Serbanovic-Canic J.
        • Elling U.
        • Goodall A.H.
        • Labrune Y.
        • Lopez L.M.
        • Magi R.
        • Meacham S.
        • Okada Y.
        • Pirastu N.
        • Sorice R.
        • Teumer A.
        • Voss K.
        • Zhang W.
        • Ramirez-Solis R.
        • Bis J.C.
        • Ellinghaus D.
        • Gogele M.
        • Hottenga J.J.
        • Langenberg C.
        • Kovacs P.
        • O'Reilly P.F.
        • Shin S.Y.
        • Esko T.
        • Hartiala J.
        • Kanoni S.
        • Murgia F.
        • Parsa A.
        • Stephens J.
        • van der Harst P.
        • Allayee H.
        • Attwood A.
        • Balkau B.
        • Bastardot F.
        • Basu S.
        • Baumeister S.E.
        • Biino G.
        • Bomba L.
        • Bonnefond A.
        • Cambien F.
        • Chambers J.C.
        • Cucca F.
        • D'Adamo P.
        • Davies G.
        • de Boer R.A.
        • de Geus E.J.
        • Doring A.
        • Elliott P.
        • Erdmann J.
        • Evans D.M.
        • Falchi M.
        • Feng W.
        • Folsom A.R.
        • Frazer I.H.
        • Gibson Q.D.
        • Glazer N.L.
        • Hammond C.
        • Hartikainen A.L.
        • Heckbert S.R.
        • Hengstenberg C.
        • Hersch M.
        • Illig T.
        • Loos R.J.
        • Jolley J.
        • Khaw K.T.
        • Kuhnel B.
        • Kyrtsonis M.C.
        • Lagou V.
        • Lloyd-Jones H.
        • Lumley T.
        • Mangino M.
        • Maschio A.
        • Mateo Leach I.
        • Memari Y.
        • Mitchell B.D.
        • Montgomery G.W.
        • Nakamura Y.
        • Nauck M.
        • Navis G.
        • Nothlings U.
        • Nolte I.M.
        • Porteous D.J.
        • Pouta A.
        • Pramstaller P.P.
        • Pullat J.
        • Ring S.M.
        • Rotter J.I.
        • Ruggiero D.
        • Ruokonen A.
        • Sala C.
        • Samani N.J.
        • Sambrook J.
        • Schlessinger D.
        • Schreiber S.
        • Schunkert H.
        • Scott J.
        • Smith N.L.
        • Snieder H.
        • Starr J.M.
        • Stumvoll M.
        • Takahashi A.
        • Tang W.H.
        • Taylor K.
        • Tenesa A.
        • Lay Thein S.
        • Tonjes A.
        • Uda M.
        • Ulivi S.
        • van Veldhuisen D.J.
        • Visscher P.M.
        • Volker U.
        • Wichmann H.E.
        • Wiggins K.L.
        • Willemsen G.
        • Yang T.P.
        • Hua Zhao J.
        • Zitting P.
        • Bradley J.R.
        • Dedoussis G.V.
        • Gasparini P.
        • Hazen S.L.
        • Metspalu A.
        • Pirastu M.
        • Shuldiner A.R.
        • Joost van Pelt L.
        • Zwaginga J.J.
        • Boomsma D.I.
        • Deary I.J.
        • Franke A.
        • Froguel P.
        • Ganesh S.K.
        • Jarvelin M.R.
        • Martin N.G.
        • Meisinger C.
        • Psaty B.M.
        • Spector T.D.
        • Wareham N.J.
        • Akkerman J.W.
        • Ciullo M.
        • Deloukas P.
        • Greinacher A.
        • Jupe S.
        • Kamatani N.
        • Khadake J.
        • Kooner J.S.
        • Penninger J.
        • Prokopenko I.
        • Stemple D.
        • Toniolo D.
        • Wernisch L.
        • Sanna S.
        • Hicks A.A.
        • Rendon A.
        • Ferreira M.A.
        • Ouwehand W.H.
        • Soranzo N.
        • Ellen van der Schoot C.
        • McKnight B.
        New gene functions in megakaryopoiesis and platelet formation.
        Nature. 2011; 480: 201-208https://doi.org/10.1038/nature10659
        • Oh J.H.
        • Kim Y.K.
        • Moon S.
        • Kim Y.J.
        • Kim B.J.
        Genome-wide association study identifies candidate loci associated with platelet count in Koreans.
        Genomics Informatics. 2014; 12: 225-230https://doi.org/10.5808/gi.2014.12.4.225
        • Josefsson E.C.
        • Vainchenker W.
        • James C.
        Regulation of platelet production and life span: role of bcl-xL and potential implications for human platelet diseases.
        Int. J. Mol. Sci. 2020; : 21https://doi.org/10.3390/ijms21207591
        • Debrincat M.A.
        • Josefsson E.C.
        • James C.
        • Henley K.J.
        • Ellis S.
        • Lebois M.
        • Betterman K.L.
        • Lane R.M.
        • Rogers K.L.
        • White M.J.
        • Roberts A.W.
        • Harvey N.L.
        • Metcalf D.
        • Kile B.T.
        Mcl-1 and bcl-x(L) coordinately regulate megakaryocyte survival.
        Blood. 2012; 119: 5850-5858https://doi.org/10.1182/blood-2011-12-398834
        • Kodama T.
        • Hikita H.
        • Kawaguchi T.
        • Shigekawa M.
        • Shimizu S.
        • Hayashi Y.
        • Li W.
        • Miyagi T.
        • Hosui A.
        • Tatsumi T.
        • Kanto T.
        • Hiramatsu N.
        • Kiyomizu K.
        • Tadokoro S.
        • Tomiyama Y.
        • Hayashi N.
        • Takehara T.
        Mcl-1 and bcl-xL regulate Bak/Bax-dependent apoptosis of the megakaryocytic lineage at multistages.
        Cell Death Differ. 2012; 19: 1856-1869https://doi.org/10.1038/cdd.2012.88
        • Print C.G.
        • Loveland K.L.
        • Gibson L.
        • Meehan T.
        • Stylianou A.
        • Wreford N.
        • de Kretser D.
        • Metcalf D.
        • Kontgen F.
        • Adams J.M.
        • Cory S.
        Apoptosis regulator bcl-w is essential for spermatogenesis but appears otherwise redundant.
        Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 12424-12431
        • Ross A.J.
        • Waymire K.G.
        • Moss J.E.
        • Parlow A.F.
        • Skinner M.K.
        • Russell L.D.
        • MacGregor G.R.
        Testicular degeneration in bclw-deficient mice.
        Nat. Genet. 1998; 18: 251-256https://doi.org/10.1038/ng0398-251
        • Delbridge A.R.
        • Chappaz S.
        • Ritchie M.E.
        • Kile B.T.
        • Strasser A.
        • Grabow S.
        Loss of PUMA (BBC3) does not prevent thrombocytopenia caused by the loss of BCL-XL (BCL2L1).
        Br. J. Haematol. 2016; 174: 962-969https://doi.org/10.1111/bjh.14155
        • Hamasaki A.
        • Sendo F.
        • Nakayama K.
        • Ishida N.
        • Negishi I.
        • Nakayama K.
        • Hatakeyama S.
        Accelerated neutrophil apoptosis in mice lacking A1-a, a subtype of the bcl-2-related A1 gene.
        J. Exp. Med. 1998; 188: 1985-1992
        • Ottina E.
        • Grespi F.
        • Tischner D.
        • Soratroi C.
        • Geley S.
        • Ploner A.
        • Reichardt H.M.
        • Villunger A.
        • Herold M.J.
        Targeting antiapoptotic A1/Bfl-1 by in vivo RNAi reveals multiple roles in leukocyte development in mice.
        Blood. 2012; 119: 6032-6042https://doi.org/10.1182/blood-2011-12-399089
        • Kelly P.N.
        • White M.J.
        • Goschnick M.W.
        • Fairfax K.A.
        • Tarlinton D.M.
        • Kinkel S.A.
        • Bouillet P.
        • Adams J.M.
        • Kile B.T.
        • Strasser A.
        Individual and overlapping roles of BH3-only proteins bim and bad in apoptosis of lymphocytes and platelets and in suppression of thymic lymphoma development.
        Cell Death Differ. 2010; 17: 1655-1664https://doi.org/10.1038/cdd.2010.43
        • Josefsson E.C.
        • Burnett D.L.
        • Lebois M.
        • Debrincat M.A.
        • White M.J.
        • Henley K.J.
        • Lane R.M.
        • Moujalled D.
        • Preston S.P.
        • O'Reilly L.A.
        • Pellegrini M.
        • Metcalf D.
        • Strasser A.
        • Kile B.T.
        Platelet production proceeds independently of the intrinsic and extrinsic apoptosis pathways.
        Nat. Commun. 2014; 5: 3455https://doi.org/10.1038/ncomms4455
        • Lien L.M.
        • Su C.C.
        • Hsu W.H.
        • Lu W.J.
        • Chung C.L.
        • Yen T.L.
        • Chiu H.C.
        • Sheu J.R.
        • Lin K.H.
        Mechanisms of andrographolide-induced platelet apoptosis in human platelets: regulatory roles of the extrinsic apoptotic pathway.
        Phytother. Res. 2013; 27: 1671-1677https://doi.org/10.1002/ptr.4911
        • Lin K.H.
        • Hsiao G.
        • Shih C.M.
        • Chou D.S.
        • Sheu J.R.
        Mechanisms of resveratrol-induced platelet apoptosis.
        Cardiovasc. Res. 2009; 83: 575-585https://doi.org/10.1093/cvr/cvp139
        • Lopez J.J.
        • Salido G.M.
        • Pariente J.A.
        • Rosado J.A.
        Thrombin induces activation and translocation of bid, bax and bak to the mitochondria in human platelets.
        J. Thromb. Haemostasis. 2008; 6: 1780-1788https://doi.org/10.1111/j.1538-7836.2008.03111.x
        • Zhao L.
        • Liu J.
        • He C.
        • Yan R.
        • Zhou K.
        • Cui Q.
        • Meng X.
        • Li X.
        • Zhang Y.
        • Nie Y.
        • Zhang Y.
        • Hu R.
        • Liu Y.
        • Zhao L.
        • Chen M.
        • Xiao W.
        • Tian J.
        • Zhao Y.
        • Cao L.
        • Zhou L.
        • Lin A.
        • Ruan C.
        • Dai K.
        Protein kinase a determines platelet life span and survival by regulating apoptosis.
        J. Clin. Invest. 2017; 127: 4338-4351https://doi.org/10.1172/jci95109
        • Catani M.V.
        • Gasperi V.
        • Evangelista D.
        • Finazzi Agrò A.
        • Avigliano L.
        • Maccarrone M.
        Anandamide extends platelets survival through CB(1)-dependent akt signaling.
        Cell. Mol. Life Sci. 2010; 67: 601-610https://doi.org/10.1007/s00018-009-0198-9
        • Chatterjee M.
        • Borst O.
        • Walker B.
        • Fotinos A.
        • Vogel S.
        • Seizer P.
        • Mack A.
        • Alampour-Rajabi S.
        • Rath D.
        • Geisler T.
        • Lang F.
        • Langer H.F.
        • Bernhagen J.
        • Gawaz M.
        Macrophage migration inhibitory factor limits activation-induced apoptosis of platelets via CXCR7-dependent akt signaling.
        Circ. Res. 2014; 115: 939-949https://doi.org/10.1161/circresaha.115.305171
        • Tian H.
        • Huang S.
        • Luo Q.
        • Lin Z.
        • Liu H.
        • Zhang Z.
        • Fong W.
        • Zhao J.
        • Yu F.
        Akt pathway activation reduces platelet apoptosis and contributes to the increase of platelet counts in solid tumor patients.
        Platelets. 2022; : 1-9https://doi.org/10.1080/09537104.2022.2026908
        • Zhang S.
        • Ye J.
        • Zhang Y.
        • Xu X.
        • Liu J.
        • Zhang S.H.
        • Kunapuli S.P.
        • Ding Z.
        P2Y12 protects platelets from apoptosis via PI3k-dependent Bak/Bax inactivation.
        Journal of thrombosis and haemostasis : JTH. 2013; 11: 149-160https://doi.org/10.1111/jth.12063
        • Josefsson E.C.
        • Dowling M.R.
        • Lebois M.
        • Kile B.T.
        The regulation of platelet life span.
        in: Michelson A.D. Platelets. 3rd edn. Elsevier, 2013: 51-66
        • Plenchette S.
        • Moutet M.
        • Benguella M.
        • N'Gondara J.P.
        • Guigner F.
        • Coffe C.
        • Corcos L.
        • Bettaieb A.
        • Solary E.
        Early increase in DcR2 expression and late activation of caspases in the platelet storage lesion.
        Leukemia. 2001; 15: 1572-1581
        • Mutlu A.
        • Gyulkhandanyan A.V.
        • Freedman J.
        • Leytin V.
        Activation of caspases-9, -3 and -8 in human platelets triggered by BH3-only mimetic ABT-737 and calcium ionophore A23187: caspase-8 is activated via bypass of the death receptors.
        Br. J. Haematol. 2012; 159: 565-571https://doi.org/10.1111/bjh.12066
        • Leytin V.
        • Gyulkhandanyan A.V.
        • Freedman J.
        Platelet apoptosis can be triggered bypassing the death receptors.
        Clin. Appl. Thromb. Hemost. 2019; 25 (1076029619853641)https://doi.org/10.1177/1076029619853641
        • Moujalled D.
        • Gangatirkar P.
        • Kauppi M.
        • Corbin J.
        • Lebois M.
        • Murphy J.M.
        • Lalaoui N.
        • Hildebrand J.M.
        • Silke J.
        • Alexander W.S.
        • Josefsson E.C.
        The necroptotic cell death pathway operates in megakaryocytes, but not in platelet synthesis.
        Cell Death Dis. 2021; 12: 133https://doi.org/10.1038/s41419-021-03418-z
        • White M.J.
        • Schoenwaelder S.M.
        • Josefsson E.C.
        • Jarman K.E.
        • Henley K.J.
        • James C.
        • Debrincat M.A.
        • Jackson S.P.
        • Huang D.C.
        • Kile B.T.
        Caspase-9 mediates the apoptotic death of megakaryocytes and platelets, but is dispensable for their generation and function.
        Blood. 2012; 119: 4283-4290https://doi.org/10.1182/blood-2011-11-394858
        • van Delft M.F.
        • Smith D.P.
        • Lahoud M.H.
        • Huang D.C.
        • Adams J.M.
        Apoptosis and non-inflammatory phagocytosis can be induced by mitochondrial damage without caspases.
        Cell Death Differ. 2010; 17: 821-832https://doi.org/10.1038/cdd.2009.166
        • White M.J.
        • McArthur K.
        • Metcalf D.
        • Lane R.M.
        • Cambier J.C.
        • Herold M.J.
        • van Delft M.F.
        • Bedoui S.
        • Lessene G.
        • Ritchie M.E.
        • Huang D.C.
        • Kile B.T.
        Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production.
        Cell. 2014; 159: 1549-1562https://doi.org/10.1016/j.cell.2014.11.036
        • Agbani E.O.
        • Poole A.W.
        Procoagulant platelets: generation, function, and therapeutic targeting in thrombosis.
        Blood. 2017; 130: 2171-2179https://doi.org/10.1182/blood-2017-05-787259
        • Suzuki J.
        • Umeda M.
        • Sims P.J.
        • Nagata S.
        Calcium-dependent phospholipid scrambling by TMEM16F.
        Nature. 2010; 468: 834-838https://doi.org/10.1038/nature09583
        • Baig A.A.
        • Haining E.J.
        • Geuss E.
        • Beck S.
        • Swieringa F.
        • Wanitchakool P.
        • Schuhmann M.K.
        • Stegner D.
        • Kunzelmann K.
        • Kleinschnitz C.
        • Heemskerk J.W.
        • Braun A.
        • Nieswandt B.
        TMEM16F-mediated platelet membrane phospholipid scrambling is critical for hemostasis and thrombosis but not thromboinflammation in mice-brief report.
        Arterioscler. Thromb. Vasc. Biol. 2016; 36: 2152-2157https://doi.org/10.1161/atvbaha.116.307727
        • Heemskerk J.W.
        • Mattheij N.J.
        • Cosemans J.M.
        Platelet-based coagulation: different populations, different functions.
        J. Thromb. Haemost. 2013; 11: 2-16https://doi.org/10.1111/jth.12045
        • Mazepa M.
        • Hoffman M.
        • Monroe D.
        Superactivated platelets: thrombus regulators, thrombin generators, and potential clinical targets.
        Arterioscler. Thromb. Vasc. Biol. 2013; 33: 1747-1752https://doi.org/10.1161/atvbaha.113.301790
        • Pleines I.
        • Lebois M.
        • Gangatirkar P.
        • Au A.E.
        • Lane R.M.
        • Henley K.J.
        • Kauppi M.
        • Corbin J.
        • Cannon P.
        • Bernardini J.
        • Alwis I.
        • Jarman K.E.
        • Ellis S.
        • Metcalf D.
        • Jackson S.P.
        • Schoenwaelder S.M.
        • Kile B.T.
        • Josefsson E.C.
        Intrinsic apoptosis circumvents the functional decline of circulating platelets but does not cause the storage lesion.
        Blood. 2018; 132: 197-209https://doi.org/10.1182/blood-2017-11-816355
        • Hoffmeister K.M.
        • Felbinger T.W.
        • Falet H.
        • Denis C.V.
        • Bergmeier W.
        • Mayadas T.N.
        • von Andrian U.H.
        • Wagner D.D.
        • Stossel T.P.
        • Hartwig J.H.
        The clearance mechanism of chilled blood platelets.
        Cell. 2003; 112: 87-97https://doi.org/10.1016/s0092-8674(02)01253-9
        • Zhao H.
        • Devine D.V.
        The missing pieces to the cold-stored platelet puzzle.
        Int. J. Mol. Sci. 2022; : 23https://doi.org/10.3390/ijms23031100
        • Cazenave J.P.
        • Isola H.
        • Waller C.
        • Mendel I.
        • Kientz D.
        • Laforet M.
        • Raidot J.P.
        • Kandel G.
        • Wiesel M.L.
        • Corash L.
        Use of additive solutions and pathogen inactivation treatment of platelet components in a regional blood center: impact on patient outcomes and component utilization during a 3-year period.
        Transfusion. 2011; 51: 622-629https://doi.org/10.1111/j.1537-2995.2010.02873.x
        • Ohto H.
        • Nollet K.E.
        Overview on platelet preservation: better controls over storage lesion.
        Transfus. Apher. Sci. 2011; 44: 321-325https://doi.org/10.1016/j.transci.2011.03.008
        • Kraemer B.F.
        • Campbell R.A.
        • Schwertz H.
        • Franks Z.G.
        • Vieira de Abreu A.
        • Grundler K.
        • Kile B.T.
        • Dhakal B.K.
        • Rondina M.T.
        • Kahr W.H.
        • Mulvey M.A.
        • Blaylock R.C.
        • Zimmerman G.A.
        • Weyrich A.S.
        Bacteria differentially induce degradation of Bcl-xL, a survival protein, by human platelets.
        Blood. 2012; 120: 5014-5020https://doi.org/10.1182/blood-2012-04-420661
        • Yeh J.J.
        • Tsai S.
        • Wu D.C.
        • Wu J.Y.
        • Liu T.C.
        • Chen A.
        P-selectin-dependent platelet aggregation and apoptosis may explain the decrease in platelet count during helicobacter pylori infection.
        Blood. 2010; 115: 4247-4253https://doi.org/10.1182/blood-2009-09-241166
        • Rohlfing A.K.
        • Rath D.
        • Geisler T.
        • Gawaz M.
        Platelets and COVID-19.
        Hamostaseologie. 2021; 41: 379-385https://doi.org/10.1055/a-1581-4355
        • Althaus K.
        • Marini I.
        • Zlamal J.
        • Pelzl L.
        • Singh A.
        • Häberle H.
        • Mehrländer M.
        • Hammer S.
        • Schulze H.
        • Bitzer M.
        • Malek N.
        • Rath D.
        • Bösmüller H.
        • Nieswandt B.
        • Gawaz M.
        • Bakchoul T.
        • Rosenberger P.
        Antibody-induced procoagulant platelets in severe COVID-19 infection.
        Blood. 2021; 137: 1061-1071https://doi.org/10.1182/blood.2020008762
        • Zauli G.
        • Catani L.
        • Gibellini D.
        • Re M.C.
        • Vianelli N.
        • Colangeli V.
        • Celeghini C.
        • Capitani S.
        • La Placa M.
        Impaired survival of bone marrow GPIIb/IIa+ megakaryocytic cells as an additional pathogenetic mechanism of HIV-1-related thrombocytopenia.
        Br. J. Haematol. 1996; 92: 711-717
        • Zucker-Franklin D.
        • Termin C.S.
        • Cooper M.C.
        Structural changes in the megakaryocytes of patients infected with the human immune deficiency virus (HIV-1).
        Am. J. Pathol. 1989; 134: 1295-1303
        • Alonzo M.T.
        • Lacuesta T.L.
        • Dimaano E.M.
        • Kurosu T.
        • Suarez L.A.
        • Mapua C.A.
        • Akeda Y.
        • Matias R.R.
        • Kuter D.J.
        • Nagata S.
        • Natividad F.F.
        • Oishi K.
        Platelet apoptosis and apoptotic platelet clearance by macrophages in secondary dengue virus infections.
        J. Infect. Dis. 2012; 205: 1321-1329https://doi.org/10.1093/infdis/jis180
        • Hottz E.D.
        • Oliveira M.F.
        • Nunes P.C.
        • Nogueira R.M.
        • Valls-de-Souza R.
        • Da Poian A.T.
        • Weyrich A.S.
        • Zimmerman G.A.
        • Bozza P.T.
        • Bozza F.A.
        Dengue induces platelet activation, mitochondrial dysfunction and cell death through mechanisms that involve DC-SIGN and caspases.
        J. Thromb. Haemost. 2013; 11: 951-962https://doi.org/10.1111/jth.12178
        • Clark K.B.
        • Noisakran S.
        • Onlamoon N.
        • Hsiao H.M.
        • Roback J.
        • Villinger F.
        • Ansari A.A.
        • Perng G.C.
        Multiploid CD61+ cells are the pre-dominant cell lineage infected during acute dengue virus infection in bone marrow.
        PLoS One. 2012; 7e52902https://doi.org/10.1371/journal.pone.0052902
        • Houwerzijl E.J.
        • Blom N.R.
        • van der Want J.J.
        • Esselink M.T.
        • Koornstra J.J.
        • Smit J.W.
        • Louwes H.
        • Vellenga E.
        • de Wolf J.T.
        Ultrastructural study shows morphologic features of apoptosis and Para-apoptosis in megakaryocytes from patients with idiopathic thrombocytopenic purpura.
        Blood. 2004; 103: 500-506https://doi.org/10.1182/blood-2003-01-0275
        • Winkler J.
        • Kroiss S.
        • Rand M.L.
        • Azzouzi I.
        • Annie Bang K.W.
        • Speer O.
        • Schmugge M.
        Platelet apoptosis in paediatric immune thrombocytopenia is ameliorated by intravenous immunoglobulin.
        Br. J. Haematol. 2012; 156: 508-515https://doi.org/10.1111/j.1365-2141.2011.08973.x
        • Wang J.D.
        • Ou T.T.
        • Wang C.J.
        • Chang T.K.
        • Lee H.J.
        Platelet apoptosis resistance and increased CXCR4 expression in pediatric patients with chronic immune thrombocytopenic purpura.
        Thromb. Res. 2010; 126: 311-318https://doi.org/10.1016/j.thromres.2010.06.023
        • Martin M.
        • de Paz R.
        • Jimenez-Yuste V.
        • Fernandez Bello I.
        • Garcia Arias Salgado E.
        • Alvarez M.T.
        • Butta N.V.
        Platelet apoptosis and agonist-mediated activation in myelodysplastic syndromes.
        Thromb. Haemost. 2013; 109: 909-919https://doi.org/10.1160/th12-09-0670
        • Houwerzijl E.J.
        • Blom N.R.
        • van der Want J.J.
        • Vellenga E.
        • de Wolf J.T.
        Megakaryocytic dysfunction in myelodysplastic syndromes and idiopathic thrombocytopenic purpura is in part due to different forms of cell death.
        Leukemia. 2006; 20: 1937-1942https://doi.org/10.1038/sj.leu.2404385
        • Bao J.
        • Lin L.
        Platelet apoptosis in patients with acute coronary syndromes.
        J. Thromb. Thrombolysis. 2015; 39: 539-546https://doi.org/10.1007/s11239-014-1160-8
        • Singhal R.
        • Annarapu G.K.
        • Pandey A.
        • Chawla S.
        • Ojha A.
        • Gupta A.
        • Cruz M.A.
        • Seth T.
        • Guchhait P.
        Hemoglobin interaction with GP1balpha induces platelet activation and apoptosis: a novel mechanism associated with intravascular hemolysis.
        Haematologica. 2015; https://doi.org/10.3324/haematol.2015.132183
        • Lee M.K.S.
        • Kraakman M.J.
        • Dragoljevic D.
        • Hanssen N.M.J.
        • Flynn M.C.
        • Al-Sharea A.
        • Sreejit G.
        • Bertuzzo-Veiga C.
        • Cooney O.D.
        • Baig F.
        • Morriss E.
        • Cooper M.E.
        • Josefsson E.C.
        • Kile B.T.
        • Nagareddy P.R.
        • Murphy A.J.
        Apoptotic ablation of platelets reduces atherosclerosis in mice with diabetes.
        Arterioscler. Thromb. Vasc. Biol. 2021; 41: 1167-1178https://doi.org/10.1161/atvbaha.120.315369
        • Hyslop S.R.
        • Alexander M.
        • Thai A.A.
        • Kersbergen A.
        • Kueh A.J.
        • Herold M.J.
        • Corbin J.
        • Gangatirkar P.
        • Ng A.P.
        • Solomon B.J.
        • Alexander W.S.
        • Sutherland K.D.
        • Josefsson E.C.
        Targeting platelets for improved outcome in KRAS-driven lung adenocarcinoma.
        Oncogene. 2020; 39: 5177-5186https://doi.org/10.1038/s41388-020-1357-6

      Further Reading

        • Mitchell W.B.
        • Pinheiro M.P.
        • Boulad N.
        • Kaplan D.
        • Edison M.N.
        • Psaila B.
        • Karpoff M.
        • White M.J.
        • Josefsson E.C.
        • Kile B.T.
        • Bussel J.B.
        Effect of thrombopoietin receptor agonists on the apoptotic profile of platelets in patients with chronic immune thrombocytopenia.
        Am. J. Hematol. 2014; 89: E228-E234https://doi.org/10.1002/ajh.23832
        • Burkhart J.M.
        • Vaudel M.
        • Gambaryan S.
        • Radau S.
        • Walter U.
        • Martens L.
        • Geiger J.
        • Sickmann A.
        • Zahedi R.P.
        The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways.
        Blood. 2012; 120: e73-e82https://doi.org/10.1182/blood-2012-04-416594
        • Clarke M.C.
        • Savill J.
        • Jones D.B.
        • Noble B.S.
        • Brown S.B.
        Compartmentalized megakaryocyte death generates functional platelets committed to caspase-independent death.
        J. Cell Biol. 2003; 160: 577-587https://doi.org/10.1083/jcb.200210111
        • Lin K.H.
        • Chang H.C.
        • Lu W.J.
        • Jayakumar T.
        • Chou H.C.
        • Fong T.H.
        • Hsiao G.
        • Sheu J.R.
        Comparison of the relative activities of inducing platelet apoptosis stimulated by various platelet-activating agents.
        Platelets. 2009; 20: 575-581https://doi.org/10.3109/09537100903315704
        • Choo H.J.
        • Kholmukhamedov A.
        • Zhou C.
        • Jobe S.
        Inner mitochondrial membrane disruption links apoptotic and agonist-initiated phosphatidylserine externalization in platelets.
        Arterioscler. Thromb. Vasc. Biol. 2017; 37: 1503-1512https://doi.org/10.1161/atvbaha.117.309473