Advertisement

Thrombin generation assay as a biomarker of cardiovascular outcomes and mortality: A narrative review

      Highlights

      • Measure the thrombin generation in CVDs may add knowledge of the pathophysiological process and suggest a way to prevention.
      • The relation between thrombin generation and CVDs and mortality is poorly explored and the results are still inconsistent.
      • Despite the lack of standardization that makes the use of TGA in clinical practice difficult, it can be a risk biomarker.
      • In the acute phase of CVDs, a prothrombotic profile is observed and in the chronic phase there seems to be a normalization.

      Abstract

      Cardiovascular diseases (CVDs) are currently the leading cause of death worldwide. Therefore, there is interest in the search for cardiovascular risk markers that contribute to the early diagnosis, monitoring and prevention of cardiovascular events. Considering that CVDs present in their pathophysiology a strong interaction between inflammation and hemostasis, thrombin, a key enzyme in the clotting process can be thought as a possible biomarker of cardiovascular risk. The thrombin generation assay (TGA) by the Calibrated Automated Thrombogram (CAT) method has been used in numerous prospective studies. It is a relatively recent laboratory tool capable of globally evaluating the functioning of the hemostatic system through the determination of thrombin generation for investigating the contribution of procoagulants and natural anticoagulants, in addition to the effect of different drugs and a range of factors that interfere in this system. The analysis of thrombin generation can be a promising tool for estimating the risk of thrombotic diseases, although the association of TGA with arterial thrombosis has only recently attracted interest and remains to be better understood. The association between thrombin generation and cardiovascular events, especially acute myocardial infarction (AMI) and stroke, all-cause and cardiovascular mortality is still poorly investigated and the results are often inconsistent. Assessing the relationship between TGA and CVDs may not only contribute to increasing knowledge of the pathophysiological process that leads to coronary and cerebrovascular diseases, but may also suggest a new approach to prevention. In this article we review and summarize the results of the main studies that evaluated whether TGA parameters were associated with cardiovascular events, cardiovascular mortality and all-cause mortality. Possible contributing factors to the observed inconsistencies were also speculated.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Thrombosis Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Smith S.C.
        • Collins A.
        • Ferrari R.
        • Holmes D.R.
        • Logstrup S.
        • McGhie D.V.
        • Ralston J.
        • Sacco R.L.
        • Stam H.
        • Taubert K.
        • Wood D.A.
        • Zoghbi W.A.
        Our time: a call to save preventable death from cardiovascular disease (heart disease and stroke).
        Circulation. 2012; 126: 2769-2775https://doi.org/10.1161/CIR.0b013e318267e99f
        • Mahmood S.S.
        • Levy D.
        • Vasan R.S.
        • Wang T.J.
        The Framingham heart study and the epidemiology of cardiovascular disease: a historical perspective.
        Lancet. 2014; 383: 999-1008https://doi.org/10.1016/S0140-6736(13)61752-3
        • Laslett L.J.
        • Alagona P.
        • Clark B.A.
        • Drozda J.P.
        • Saldivar F.
        • Wilson S.R.
        • Poe C.
        • Hart M.
        The worldwide environment of cardiovascular disease: prevalence, diagnosis, therapy, and policy issues.
        J. Am. Coll. Cardiol. 2012; 60: S1-S49https://doi.org/10.1016/j.jacc.2012.11.002
        • Singh-Manoux A.
        • Shipley M.J.
        • Bell J.A.
        • Canonico M.
        • Elbaz A.
        • Kivimaki M.
        Association between inflammatory biomarkers and all-cause, cardiovascular and cancer-related mortality.
        CMAJ. 2017; 189: E384-E390https://doi.org/10.1503/cmaj.160313
        • Weitz J.I.
        Insights into the role of thrombin in the pathogenesis of recurrent ischaemia after acute coronary syndrome.
        Thromb. Haemost. 2014; 112: 924-931https://doi.org/10.1160/TH14-03-0265
        • ten Cate H.
        • Hemker H.C.
        Thrombin generation and atherothrombosis: what does the evidence indicate?.
        J. Am. Heart Assoc. 2016; 5: 1-8https://doi.org/10.1161/JAHA.116.003553
        • Kalz J.
        • ten Cate H.
        • Spronk H.M.H.
        Thrombin generation and atherosclerosis.
        J. Thromb. Thrombolysis. 2014; 37: 45-55https://doi.org/10.1007/s11239-013-1026-5
        • Libby P.
        • Theroux P.
        Pathophysiology of coronary artery disease.
        Circulation. 2005; 111: 3481-3488https://doi.org/10.1161/CIRCULATIONAHA.105.537878
        • Baglin T.
        The measurement and application of thrombin generation.
        Br. J. Haematol. 2005; 130: 653-661https://doi.org/10.1111/j.1365-2141.2005.05612.x
        • Duarte R.C.F.
        • Ferreira C.N.
        • Rios D.R.A.
        • dos Reis H.J.
        • Carvalho M.das G.
        Thrombin generation assays for global evaluation of the hemostatic system: perspectives and limitations.
        Rev. Bras. Hematol. Hemoter. 2017; 39: 259-265https://doi.org/10.1016/j.bjhh.2017.03.009
        • Tripodi A.
        Thrombin generation assay and its application in the clinical laboratory.
        Clin. Chem. 2016; 62: 699-707https://doi.org/10.1373/clinchem.2015.248625
        • Ninivaggi M.
        • de Laat-Kremers R.
        • Tripodi A.
        • Wahl D.
        • Zuily S.
        • Dargaud Y.
        • ten Cate H.
        • Ignjatović V.
        • Devreese K.M.J.
        • de Laat B.
        Recommendations for the measurement of thrombin generation: communication from the ISTH SSC Subcommittee on Lupus Anticoagulant/Antiphospholipid Antibodies.
        J. Thromb. Haemost. 2021; 19: 1372-1378https://doi.org/10.1111/jth.15287
        • Carcaillon L.
        • Alhenc-Gelas M.
        • Bejot Y.
        • Spaft C.
        • Ducimetière P.
        • Ritchie K.
        • Dartigues J.-F.
        • Scarabin P.-Y.
        Increased thrombin generation is associated with acute ischemic stroke but not with coronary heart disease in the elderly.
        Arterioscler. Thromb. Vasc. Biol. 2011; 31: 1445-1451https://doi.org/10.1161/ATVBAHA.111.223453
        • Loeffen R.
        • Winckers K.
        • Ford I.
        • Jukema J.W.
        • Robertson M.
        • Stott D.J.
        • Spronk H.M.
        • ten Cate H.
        • Lowe G.D.
        Associations between thrombin generation and the risk of cardiovascular disease in elderly patients: results from the PROSPER study.
        J.Gerontol.Ser.A Biol.Sci.Med.Sci. 2015; 70: 982-988https://doi.org/10.1093/gerona/glu228
        • Christersson C.
        • Lindahl B.
        • Berglund L.
        • Siegbahn A.
        • Oldgren J.
        The utility of coagulation activity for prediction of risk of mortality and cardiovascular events in guideline-treated myocardial infarction patients.
        Ups. J. Med. Sci. 2017; 122: 224-233https://doi.org/10.1080/03009734.2017.1407849
        • van Paridon Pauline C.S.
        • Panova-Noeva Marina
        • van Oerle Rene
        • Schultz Andreas
        • Hermanns Iris M.
        • Prochaska Jürgen H.
        • Arnold Nathalie
        • Binder Harald
        • Schmidtmann Irene
        • Beutel Manfred E.
        • Pfeiffer Norbert
        • Münzel Thomas
        • Lackner Karl J.
        • ten Cate Hugo
        • Wild Philipp S.
        • Spronk Henri M.H.
        Thrombin generation in cardiovascular disease and mortality - results from the Gutenberg Health Study.
        Haematologica. 2019; 105: 2327-2334https://doi.org/10.3324/haematol.2019.221655
        • Attanasio M.
        • Marcucci R.
        • Gori A.M.
        • Paniccia R.
        • Valente S.
        • Balzi D.
        • Barchielli A.
        • Carrabba N.
        • Valenti R.
        • Antoniucci D.
        • Abbate R.
        • Gensini G.F.
        Residual thrombin potential predicts cardiovascular death in acute coronary syndrome patients undergoing percutaneous coronary intervention.
        Thromb. Res. 2016; 147: 52-57https://doi.org/10.1016/j.thromres.2016.09.020
        • Lecut C.
        • Peters P.
        • Massion P.B.
        • Gothot A.
        Is there a place for thrombin generation assay in routine clinical laboratory?.
        Ann. Biol. Clin. (Paris). 2015; 73: 137-149https://doi.org/10.1684/abc.2014.1018
        • Lim H.Y.
        • O’Malley C.
        • Donnan G.
        • Nandurkar H.
        • Ho P.
        A review of global coagulation assays — is there a role in thrombosis risk prediction?.
        Thromb. Res. 2019; 179: 45-55https://doi.org/10.1016/j.thromres.2019.04.033
        • Calzavarini S.
        • Brodard J.
        • Quarroz C.
        • Maire L.
        • Nützi R.
        • Jankovic J.
        • Rotondo L.C.
        • Giabbani E.
        • Fiedler G.M.
        • Nagler M.
        • Angelillo-Scherrer A.
        Thrombin generation measurement using the ST genesia thrombin generation system in a cohort of healthy adults: normal values and variability.
        Res. Pract. Thromb. Haemost. 2019; 3: 758-768https://doi.org/10.1002/rth2.12238
        • al Dieri R.
        • de Laat B.
        • Hemker H.C.
        Thrombin generation: what have we learned?.
        Blood Rev. 2012; 26: 197-203https://doi.org/10.1016/j.blre.2012.06.001
        • Hemker H.C.
        • Giesen P.
        • al Dieri R.
        • Regnault V.
        • de Smedt E.
        • Wagenvoord R.
        • Lecompte T.
        • Béguin S.
        Calibrated automated thrombin generation measurement in clotting plasma.
        Pathophysiol. Haemost. Thromb. 2003; 33: 4-15https://doi.org/10.1159/000071636
        • Depasse F.
        • Binder N.B.
        • Mueller J.
        • Wissel T.
        • Schwers S.
        • Germer M.
        • Hermes B.
        • Turecek P.L.
        Thrombin generation assays are versatile tools in blood coagulation analysis: a review of technical features, and applications from research to laboratory routine.
        J. Thromb. Haemost. 2021; 19: 2907-2917https://doi.org/10.1111/jth.15529
        • Duarte R.C.F.
        • Rios D.R.A.
        • Leite P.M.
        • Alves L.C.
        • Magalhães H.P.B.
        • Carvalho M.das G.
        Thrombin generation test for evaluating hemostatic effects of Brazilian snake venoms.
        Toxicon. 2019; 163: 36-43https://doi.org/10.1016/j.toxicon.2019.03.012
        • Leite P.M.
        • Miranda A.P.N.
        • Amorim J.M.
        • Duarte R.C.F.
        • Bertolucci S.K.V.
        • Carvalho M.das G.
        • Castilho R.O.
        In vitro anticoagulant activity of Mikania laevigata.
        J. Cardiovasc. Pharmacol. 2019; 74: 574-583https://doi.org/10.1097/FJC.0000000000000745
        • Hemker H.C.
        • Giesen P.
        • AlDieri R.
        • Regnault V.
        • de Smed E.
        • Wagenvoord R.
        • Lecompte T.
        • Béguin S.
        The calibrated automated thrombogram (CAT): a universal routine test for hyper- and hypocoagulability.
        Pathophysiol. Haemost. Thromb. 2002; 32: 249-253https://doi.org/10.1159/000073575
        • Hemker H.
        • Béguin S.
        Phenotyping the clotting system.
        Thromb. Haemost. 2000; 84: 747-751https://doi.org/10.1055/s-0037-1614109
        • Hemker H.
        • al Dieri R.
        • de Smedt E.
        • Béguin S.
        Thrombin generation, a function test of the haemostaticthrombotic system.
        Thromb. Haemost. 2006; 96: 553-561https://doi.org/10.1160/TH06-07-0408
        • Duarte R.C.F.
        • Rios D.R.A.
        • Rezende S.M.
        • Jardim L.L.
        • Ferreira C.N.
        • Carvalho M.das G.
        Standardization and evaluation of the performance of the thrombin generation test under hypo- and hypercoagulability conditions.
        Hematol. Transfus. Cell Ther. 2019; 41: 244-252https://doi.org/10.1016/j.htct.2018.08.007
        • Berntorp E.
        • Salvagno G.
        Standardization and clinical utility of thrombin-generation assays.
        Semin. Thromb. Hemost. 2008; 34: 670-682https://doi.org/10.1055/s-0028-1104546
        • Dargaud Y.
        • Luddington R.
        • Gray E.
        • Negrier C.
        • Lecompte T.
        • Petros S.
        • Hogwood J.
        • Bordet J.C.
        • Regnault V.
        • Siegemund A.
        • Baglin T.
        Effect of standardization and normalization on imprecision of calibrated automated thrombography: an international multicentre study.
        Br. J. Haematol. 2007; 139: 303-309https://doi.org/10.1111/j.1365-2141.2007.06785.x
        • Dargaud Y.
        • Luddington R.
        • Gray E.
        • Lecompte T.
        • Siegemund T.
        • Baglin T.
        • Hogwood J.
        • Regnault V.
        • Siegemund A.
        • Negrier C.
        Standardisation of thrombin generation test - which reference plasma for TGT?: an international multicentre study.
        Thromb. Res. 2010; 125: 353-356https://doi.org/10.1016/j.thromres.2009.11.012
        • Dargaud Y.
        • Wolberg A.S.
        • Luddington R.
        • Regnault V.
        • Spronk H.
        • Baglin T.
        • Lecompte T.
        • ten Cate H.
        • Negrier C.
        Evaluation of a standardized protocol for thrombin generation measurement using the calibrated automated thrombogram: an international multicentre study.
        Thromb. Res. 2012; 130: 929-934https://doi.org/10.1016/j.thromres.2012.07.017
        • Bloemen S.
        • Zwaveling S.
        • ten Cate H.
        • ten Cate-Hoek A.
        • de Laat B.
        Prediction of bleeding risk in patients taking vitamin K antagonists using thrombin generation testing.
        PLoS One. 2017; 12https://doi.org/10.1371/JOURNAL.PONE.0176967
        • Ogiwara K.
        • Nogami K.
        • Matsumoto N.
        • Noguchi-Sasaki M.
        • Hirata M.
        • Soeda T.
        • Shima M.
        A modified thrombin generation assay to evaluate the plasma coagulation potential in the presence of emicizumab, the bispecific antibody to factors IXa/X.
        Int. J. Hematol. 2020; 112: 621-630https://doi.org/10.1007/S12185-020-02959-X
        • Wan J.
        • Konings J.
        • de Laat B.
        • Hackeng T.M.
        • Roest M.
        Added value of blood cells in thrombin generation testing.
        Thromb. Haemost. 2021; 121: 1574-1587https://doi.org/10.1055/a-1450-8300
        • Smid M.
        • Dielis A.W.J.H.
        • Spronk H.M.H.
        • Rumley A.
        • van Oerle R.
        • Woodward M.
        • ten Cate H.
        • Lowe G.
        Thrombin generation in the Glasgow myocardial infarction study.
        PLoS One. 2013; 8: 4-9https://doi.org/10.1371/journal.pone.0066977
        • Borissoff J.I.
        • Joosen I.A.
        • Versteylen M.O.
        • Spronk H.M.
        • ten Cate H.
        • Hofstra L.
        Accelerated in vivo thrombin formation independently predicts the presence and severity of CT angiographic coronary atherosclerosis.
        JACC Cardiovasc. Imaging. 2012; 5: 1201-1210https://doi.org/10.1016/j.jcmg.2012.01.023
        • Loeffen R.
        • van Oerle R.
        • Leers M.P.G.
        • Kragten J.A.
        • Crijns H.
        • Spronk H.M.H.
        • ten Cate H.
        Factor XIa and thrombin generation are elevated in patients with acute coronary syndrome and predict recurrent cardiovascular events.
        PLoS One. 2016; 11: 1-16https://doi.org/10.1371/journal.pone.0158355
        • Rooth E.
        • Sobocinski-Doliwa P.
        • Antovic J.
        • Frykman Kull V.
        • von Arbin M.
        • Rosenqvist M.
        • Wallén H.
        Thrombin generation in acute cardioembolic and non-cardioembolic ischemic stroke.
        Scand. J. Clin. Lab. Invest. 2013; 73: 576-584https://doi.org/10.3109/00365513.2013.826817
        • Lundström A.
        • Anggårdh-Rooth E.
        • Mobarrez F.
        • Thålin C.
        • Gigante B.
        • Laska A.C.
        • Wallén H.
        High thrombin generation after acute ischemic stroke or transient ischemic attack is associated with a reduced risk of recurrence: an observational cohort study.
        Thromb. Haemost. 2021; 121: 584-593https://doi.org/10.1055/S-0040-1721146/ID/JR200422-5
        • Donkel S.J.
        • Pater K.
        • Leebeek F.W.G.
        • Dippel D.W.J.
        • ten Cate H.
        • de Maat M.P.M.
        Thrombin generation is associated with ischemic stroke at a young age.
        Thromb. Res. 2021; 202: 139-144https://doi.org/10.1016/J.THROMRES.2021.03.028
        • Balogun I.O.
        • Roberts L.N.
        • Patel R.
        • Pathansali R.
        • Kalra L.
        • Arya R.
        Thrombin generation in acute ischaemic stroke.
        Stroke Res. Treat. 2016; 20167940680https://doi.org/10.1155/2016/7940680
        • de Breet C.P.D.M.
        • Zwaveling S.
        • Vries M.J.A.
        • van Oerle R.G.
        • Henskens Y.M.C.
        • van der Meijden P.E.J.
        • Veenstra L.
        • ten Cate H.
        • Olie R.H.
        • van't Hof A.W.J.
        Thrombin generation as a method to identify the risk of bleeding in high clinical-risk patients using dual antiplatelet therapy.
        . 2021; 8679934https://doi.org/10.3389/FCVM.2021.679934
        • Kadoglou N.P.E.
        • Moustardas P.
        • Katsimpoulas M.
        • Kapelouzou A.
        • Kostomitsopoulos N.
        • Schafer K.
        • Kostakis A.
        • Liapis C.D.
        The beneficial effects of a direct thrombin inhibitor, dabigatran etexilate, on the development and stability of atherosclerotic lesions in apolipoprotein e-deficient mice.
        Cardiovasc. Drugs Ther. 2012; 26: 367-374https://doi.org/10.1007/S10557-012-6411-3/FIGURES/3
        • Lee I.O.
        • Kratz M.T.
        • Schirmer S.H.
        • Baumhäkel M.
        • Böhm M.
        The effects of direct thrombin inhibition with dabigatran on plaque formation and endothelial function in apolipoprotein E-deficient mice.
        J. Pharmacol. Exp. Ther. 2012; 343: 253-257https://doi.org/10.1124/JPET.112.194837
        • Borissoff J.I.
        • Otten J.J.T.
        • Heeneman S.
        • Leenders P.
        • van Oerle R.
        • Soehnlein O.
        • Loubele S.T.B.G.
        • Hamulyák K.
        • Hackeng T.M.
        • Daemen M.J.A.P.
        • Degen J.L.
        • Weiler H.
        • Esmon C.T.
        • van Ryn J.
        • Biessen E.A.L.
        • Spronk H.M.H.
        • ten Cate H.
        Genetic and pharmacological modifications of thrombin formation in apolipoprotein e-deficient mice determine atherosclerosis severity and atherothrombosis onset in a neutrophil-dependent manner.
        PLoS One. 2013; 8https://doi.org/10.1371/JOURNAL.PONE.0055784
        • Pingel S.
        • Tiyerili V.
        • Mueller J.
        • Werner N.
        • Nickenig G.
        • Mueller C.
        Thrombin inhibition by dabigatran attenuates atherosclerosis in ApoE deficient mice.
        Arch. Med. Sci. 2014; 10: 154-160https://doi.org/10.5114/AOMS.2014.40742
        • Schneider J.G.
        • Isermann B.
        • Kleber M.E.
        • Wang H.
        • Boehm B.O.
        • Grammer T.B.
        • Prueller F.
        • Nawroth P.P.
        • Maerz W.
        Inverse association of the endogenous thrombin potential (ETP) with cardiovascular death: the Ludwigshafen Risk and Cardiovascular Health (LURIC) study.
        Int. J. Cardiol. 2014; 176: 139-144https://doi.org/10.1016/j.ijcard.2014.07.026
        • Cimenti C.
        • Koestenberger M.
        • Leschnik B.
        • Haidl H.
        • Muntean W.
        The respective and combined anticoagulant effects of recombinant human activated protein C, melagatran and heparins using CAT.
        Thromb. Res. 2007; 119: 361-367https://doi.org/10.1016/J.THROMRES.2006.03.004
        • Olivieri O.
        • Martinelli N.
        • Girelli D.
        • Pizzolo F.
        • Friso S.
        • Beltrame F.
        • Lotto V.
        • Annarumma L.
        • Corrocher R.
        Apolipoprotein C-III predicts cardiovascular mortality in severe coronary artery disease and is associated with an enhanced plasma thrombin generation.
        J. Thromb. Haemost. 2010; 8: 463-471https://doi.org/10.1111/j.1538-7836.2009.03720.x
        • Gremmel T.
        • Koppensteiner R.
        • Ay C.
        • Panzer S.
        Residual thrombin generation potential is inversely linked to the occurrence of atherothrombotic events in patients with peripheral arterial disease.
        Eur. J. Clin. Investig. 2014; 44: 319-324https://doi.org/10.1111/eci.12236
        • Tripodi A.
        Detection of procoagulant imbalance. Modified endogenous thrombin potential with results expressed as ratio of values with-to-without thrombomodulin.
        Thromb. Haemost. 2017; 117: 830-836https://doi.org/10.1160/TH16-10-0806