Advertisement

Step up to the platelet: Role of platelets in inflammation and infection

      Highlights

      • Platelets function as immune cells, directly linking coagulation and immunity.
      • Platelets respond to pathogens by direct recognition or in response to inflammatory stimuli from other immune cells.
      • Platelets represent a key regulator between protective hemostasis and pathogenic immunothrombosis.

      Abstract

      Platelets are anucleated cells derived from megakaryocytes that are primarily responsible for hemostasis. However, in recent years, these cytoplasts have become increasingly recognized as immune cells, able to detect, interact with, and kill pathogens. As platelets are involved in both immunity and coagulation, they have a central role in immunothrombosis, a physiological process in which immune cells induce the formation of microthrombi to both prevent the spread of pathogens, and to help facilitate clearance. In this review, we will highlight the role of platelets as key players in the inflammatory and innate immune response against bacterial and viral infection, including direct and indirect interactions with pathogens and other immune cells.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Thrombosis Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jiravanichpaisal P.
        • Lee B.L.
        • Söderhäll K.
        Cell-mediated immunity in arthropods: hematopoiesis, coagulation, melanization and opsonization.
        Immunobiology. 2006; 211: 213-236https://doi.org/10.1016/J.IMBIO.2005.10.015
        • Eleftherianos I.
        • Heryanto C.
        • Bassal T.
        • Zhang W.
        • Tettamanti G.
        • Mohamed A.
        Haemocyte-mediated immunity in insects: cells, processes and associated components in the fight against pathogens and parasites.
        Immunology. 2021; 164: 401-432https://doi.org/10.1111/IMM.13390
        • Lackie A.M.
        Effect of substratum wettability and charge on adhesion in vitro and encapsulation in vivo by insect haemocytes.
        J. Cell Sci. 1983; 63: 181-190https://doi.org/10.1242/JCS.63.1.181
        • Salzet M.
        Vertebrate innate immunity resembles a mosaic of invertebrate immune responses.
        Trends Immunol. 2001; 22: 285-288https://doi.org/10.1016/S1471-4906(01)01895-6
        • Davì G.
        • Patrono C.
        Platelet activation and atherothrombosis.
        N. Engl. J. Med. 2007; 357: 2482-2494https://doi.org/10.1056/NEJMRA071014
        • Kantari C.
        • Pederzoli-Ribeil M.
        • Witko-Sarsat V.
        The role of neutrophils and monocytes in innate immunity.
        Contrib. Microbiol. 2008; 15: 118-146https://doi.org/10.1159/000136335
        • Walport M.J.
        • Complement.
        First of two parts, N.
        Engl. J. Med. 2001; 344: 1058-1066https://doi.org/10.1056/NEJM200104053441406
        • Cognasse F.
        • Hamzeh H.
        • Chavarin P.
        • Acquart S.
        • Genin C.
        • Garraud O.
        Evidence of toll-like receptor molecules on human platelets.
        Immunol. Cell Biol. 2005; 83: 196-198https://doi.org/10.1111/J.1440-1711.2005.01314.X
        • Semple J.W.
        • Italiano Jr., J.E.
        • Freedman J.
        • Italiano J.E.
        • Freedman J.
        Platelets and the immune continuum.
        Nat. Rev. Immunol. 2011; 11: 264-274https://doi.org/10.1038/nri2956
        • Kral J.B.
        • Schrottmaier W.C.
        • Salzmann M.
        • Assinger A.
        Platelet interaction with innate immune cells.
        Transfus. Med. Hemotherapy. 2016; 43: 78-88https://doi.org/10.1159/000444807
        • Engelmann B.
        • Massberg S.
        Thrombosis as an intravascular effector of innate immunity.
        Nat. Rev. Immunol. 2013; 13: 34-45https://doi.org/10.1038/nri3345
        • Rivers R.P.A.
        • Hathaway W.E.
        • Weston W.L.
        The endotoxin-induced coagulant activity of human monocytes.
        Br. J. Haematol. 1975; 30: 311-316https://doi.org/10.1111/J.1365-2141.1975.TB00547.X
        • Brinkmann V.
        • Reichard U.
        • Goosmann C.
        • Fauler B.
        • Uhlemann Y.
        • Weiss D.S.
        • Weinrauch Y.
        • Zychlinsky A.
        Neutrophil extracellular traps kill bacteria.
        Science. 2004; (80-. ). 303: 1532-1535https://doi.org/10.1126/science.1092385
        • von Brühl M.-L.
        • Stark K.
        • Steinhart A.
        • Chandraratne S.
        • Konrad I.
        • Lorenz M.
        • Khandoga A.
        • Tirniceriu A.
        • Coletti R.
        • Köllnberger M.
        • Byrne R.A.
        • Laitinen I.
        • Walch A.
        • Brill A.
        • Pfeiler S.
        • Manukyan D.
        • Braun S.
        • Lange P.
        • Riegger J.
        • Ware J.
        • Eckart A.
        • Haidari S.
        • Rudelius M.
        • Schulz C.
        • Echtler K.
        • Brinkmann V.
        • Schwaiger M.
        • Preissner K.T.
        • Wagner D.D.
        • Mackman N.
        • Engelmann B.
        • Massberg S.
        Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo.
        J. Exp. Med. 2012; 209: 819-835https://doi.org/10.1084/jem.20112322
        • Grässle S.
        • Huck V.
        • Pappelbaum K.I.
        • Gorzelanny C.
        • Aponte-Santamaría C.
        • Baldauf C.
        • Gräter F.
        • Schneppenheim R.
        • Obser T.
        • Schneider S.W.
        von willebrand factor directly interacts with DNA from neutrophil extracellular traps.
        Arterioscler. Thromb. Vasc. Biol. 2014; 34: 1382-1389https://doi.org/10.1161/ATVBAHA.113.303016
        • Xu J.
        • Zhang X.
        • Monestier M.
        • Esmon N.L.
        • Esmon C.T.
        Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury.
        J. Immunol. 2011; 187: 2626-2631https://doi.org/10.4049/jimmunol.1003930
        • Semeraro F.
        • Ammollo C.T.
        • Morrissey J.H.
        • Dale G.L.
        • Friese P.
        • Esmon N.L.
        • Esmon C.T.
        Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4.
        Blood. 2011; 118: 1952-1961https://doi.org/10.1182/blood-2011-03-343061
        • Carestia A.
        • Rivadeneyra L.
        • Romaniuk M.A.
        • Fondevila C.
        • Negrotto S.
        • Schattner M.
        Functional responses and molecular mechanisms involved in histone-mediated platelet activation.
        Thromb. Haemost. 2013; 110: 1035-1045https://doi.org/10.1160/TH13-02-0174
        • Massberg S.
        • Grahl L.
        • von Bruehl M.-L.
        • Manukyan D.
        • Pfeiler S.
        • Goosmann C.
        • Brinkmann V.
        • Lorenz M.
        • Bidzhekov K.
        • Khandagale A.B.
        • Konrad I.
        • Kennerknecht E.
        • Reges K.
        • Holdenrieder S.
        • Braun S.
        • Reinhardt C.
        • Spannagl M.
        • Preissner K.T.
        • Engelmann B.
        Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases.
        Nat. Med. 2010; 16: 887-896https://doi.org/10.1038/nm.2184
        • Harrison P.
        • Martin Cramer E.
        • Platelet alpha-granules
        Blood Rev. 1993; 7: 52-62https://doi.org/10.1016/0268-960X(93)90024-X
        • McNicol A.
        • Israels S.J.
        Platelet dense granules: structure, function and implications for haemostasis.
        Thromb. Res. 1999; 95: 1-18https://doi.org/10.1016/S0049-3848(99)00015-8
        • Li N.
        Platelet-lymphocyte cross-talk.
        J. Leukoc. Biol. 2008; 83: 1069-1078https://doi.org/10.1189/JLB.0907615
        • Nurden A.T.
        Platelets, inflammation and tissue regeneration.
        Thromb. Haemost. 2011; 105: 13-33https://doi.org/10.1160/THS10-11-0720
        • O’Neill L.A.J.
        • Golenbock D.
        • Bowie A.G.
        The history of toll-like receptors - redefining innate immunity.
        Nat. Rev. Immunol. 2013; 13: 453-460https://doi.org/10.1038/NRI3446
        • Shiraki R.
        • Inoue N.
        • Kawasaki S.
        • Takei A.
        • Kadotani M.
        • Ohnishi Y.
        • Ejiri J.
        • Kobayashi S.
        • Hirata K.I.
        • Kawashima S.
        • Yokoyama M.
        Expression of toll-like receptors on human platelets.
        Thromb. Res. 2004; 113: 379-385https://doi.org/10.1016/J.THROMRES.2004.03.023
        • Andonegui G.
        • Kerfoot S.M.
        • McNagny K.
        • Ebbert K.V.J.
        • Patel K.D.
        • Kubes P.
        Platelets express functional toll-like receptor-4.
        Blood. 2005; 106: 2417-2423https://doi.org/10.1182/BLOOD-2005-03-0916
        • Ma A.C.
        • Kubes P.
        Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis.
        J. Thromb. Haemost. 2008; 6: 415-420
        • Niklaus M.
        • Klingler P.
        • Weber K.
        • Koessler A.
        • Boeck M.
        • Kobsar A.
        • Koessler J.
        The involvement of toll-like receptors 2 and 4 in human platelet signalling pathways.
        Cell. Signal. 2020; 76 (Epub 2020 Oct 24. PMID: 33132157)109817https://doi.org/10.1016/j.cellsig.2020.109817
        • Panigrahi S.
        • Ma Y.
        • Hong L.
        • Gao D.
        • West X.Z.
        • Salomon R.G.
        • Byzova T.V.
        • Podrez E.A.
        Engagement of platelet toll-like receptor 9 by novel endogenous ligands promotes platelet hyperreactivity and thrombosis.
        Circ. Res. 2013; 112: 103-112https://doi.org/10.1161/CIRCRESAHA.112.274241
        • Guo L.
        • Rondina M.T.
        The era of thromboinflammation: platelets are dynamic sensors and effector cells during infectious diseases.
        Front. Immunol. 2019; 10https://doi.org/10.3389/FIMMU.2019.02204
        • Middleton E.A.
        • Weyrich A.S.
        • Zimmerman G.A.
        Platelets in pulmonary immune responses and inflammatory lung diseases.
        Physiol. Rev. 2016; 96: 1211-1259https://doi.org/10.1152/PHYSREV.00038.2015
        • Powers M.E.
        • Becker R.E.N.
        • Sailer A.
        • Turner J.R.
        • Bubeck Wardenburg J.
        Synergistic action of Staphylococcus aureus α-toxin on platelets and myeloid lineage cells contributes to lethal sepsis.
        Cell Host Microbe. 2015; 17: 775-787https://doi.org/10.1016/J.CHOM.2015.05.011
        • Rivadeneyra L.
        • Carestia A.
        • Etulain J.
        • Pozner R.G.
        • Fondevila C.
        • Negrotto S.
        • Schattner M.
        Regulation of platelet responses triggered by toll-like receptor 2 and 4 ligands is another non-genomic role of nuclear factor-kappaB.
        Thromb. Res. 2014; 133: 235-243https://doi.org/10.1016/J.THROMRES.2013.11.028
        • Damien P.
        • Cognasse F.
        • Payrastre B.
        • Spinelli S.L.
        • Blumberg N.
        • Arthaud C.A.
        • Eyraud M.A.
        • Phipps R.P.
        • McNicol A.
        • Pozzetto B.
        • Garraud O.
        • Hamzeh-Cognasse H.
        NF-κB links TLR2 and PAR1 to soluble immunomodulator factor secretion in human platelets.
        Front. Immunol. 2017; 8https://doi.org/10.3389/FIMMU.2017.00085
        • Blair P.
        • Rex S.
        • Vitseva O.
        • Beaulieu L.
        • Tanriverdi K.
        • Chakrabarti S.
        • Hayashi C.
        • Genco C.A.
        • Iafrati M.
        • Freedman J.E.
        Stimulation of toll-like receptor 2 in human platelets induces a thromboinflammatory response through activation of phosphoinositide 3-kinase.
        Circ. Res. 2009; 104: 346-354https://doi.org/10.1161/CIRCRESAHA.108.185785
        • Assinger A.
        • Laky M.
        • Schabbauer G.
        • Hirschl A.M.
        • Buchberger E.
        • Binder B.R.
        • Volf I.
        Efficient phagocytosis of periodontopathogens by neutrophils requires plasma factors, platelets and TLR2.
        J. Thromb. Haemost. 2011; 9: 799-809https://doi.org/10.1111/J.1538-7836.2011.04193.X
        • Carestia A.
        • Kaufman T.
        • Rivadeneyra L.
        • Landoni V.I.
        • Pozner R.G.
        • Negrotto S.
        • D’Atri L.P.
        • Gómez R.M.
        • Schattner M.
        Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets.
        J. Leukoc. Biol. 2016; 99: 153-162https://doi.org/10.1189/jlb.3A0415-161R
        • McDonald B.
        • Davis R.P.
        • Kim S.-J.
        • Tse M.
        • Esmon C.T.
        • Kolaczkowska E.
        • Jenne C.N.
        Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice.
        Blood. 2017; 129: 1357-1367https://doi.org/10.1182/blood-2016-09-741298
        • Carestia A.
        • Davis R.P.
        • Grosjean H.
        • Lau M.W.
        • Jenne C.N.
        Acetylsalicylic acid inhibits intravascular coagulation during Staphylococcus aureus-induced sepsis in mice.
        Blood. 2020; 135: 1281-1286https://doi.org/10.1182/BLOOD.2019002783
        • Anabel A.S.
        • Eduardo P.C.
        • Pedro Antonio H.C.
        • Carlos S.M.
        • Juana N.M.
        • Honorio T.A.
        • Nicolás V.S.
        • Sergio Roberto A.R.
        Human platelets express toll-like receptor 3 and respond to poly I:C.
        Hum. Immunol. 2014; 75: 1244-1251https://doi.org/10.1016/J.HUMIMM.2014.09.013
        • D’Atri L.P.
        • Etulain J.
        • Rivadeneyra L.
        • Lapponi M.J.
        • Centurion M.
        • Cheng K.
        • Yin H.
        • Schattner M.
        Expression and functionality of toll-like receptor 3 in the megakaryocytic lineage.
        J. Thromb. Haemost. 2015; 13: 839-850https://doi.org/10.1111/JTH.12842
        • Pozner R.G.
        • Ure A.E.
        • de Giusti C.J.
        • D’Atri L.P.
        • Italiano J.E.
        • Torres O.
        • Romanowski V.
        • Schattner M.
        • Gómez R.M.
        Junín virus infection of human hematopoietic progenitors impairs in vitro proplatelet formation and platelet release via a bystander effect involving type I IFN signaling.
        PLoS Pathog. 2010; 6: 1-14https://doi.org/10.1371/JOURNAL.PPAT.1000847
        • Zhang G.
        • Han J.
        • Welch E.J.
        • Ye R.D.
        • Voyno-Yasenetskaya T.A.
        • Malik A.B.
        • Du X.
        • Li Z.
        Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway.
        J. Immunol. 2009; 182: 7997-8004https://doi.org/10.4049/JIMMUNOL.0802884
        • Ståhl A.L.
        • Svensson M.
        • Mörgelin M.
        • Svanborg C.
        • Tarr P.I.
        • Mooney J.C.
        • Watkins S.L.
        • Johnson R.
        • Karpman D.
        Lipopolysaccharide from enterohemorrhagic Escherichia coli binds to platelets through TLR4 and CD62 and is detected on circulating platelets in patients with hemolytic uremic syndrome.
        Blood. 2006; 108: 167-176https://doi.org/10.1182/BLOOD-2005-08-3219
        • Sheu J.R.
        • Hung W.C.
        • Kan Y.C.
        • Lee Y.M.
        • Yen M.H.
        Mechanisms involved in the antiplatelet activity of Escherichia coli lipopolysaccharide in human platelets.
        Br. J. Haematol. 1998; 103: 29-38https://doi.org/10.1046/J.1365-2141.1998.00938.X
        • Montrucchio G.
        • Bosco O.
        • Del Sorbo L.
        • Pecetto P.F.
        • Lupia E.
        • Goffi A.
        • Omedè P.
        • Emanuelli G.
        • Camussi G.
        Mechanisms of the priming effect of low doses of lipopoly-saccharides on leukocyte-dependent platelet aggregation in whole blood.
        Thromb. Haemost. 2003; 90: 872-881https://doi.org/10.1160/TH03-02-0085
        • Brown G.T.
        • McIntyre T.M.
        Lipopolysaccharide signaling without a nucleus: kinase cascades stimulate platelet shedding of proinflammatory IL-1β-rich microparticles.
        J. Immunol. 2011; 186: 5489-5496https://doi.org/10.4049/JIMMUNOL.1001623
        • Stark R.J.
        • Aghakasiri N.
        • Rumbaut R.E.
        Platelet-derived toll-like receptor 4 (Tlr-4) is sufficient to promote microvascular thrombosis in endotoxemia.
        PLoS One. 2012; 7https://doi.org/10.1371/JOURNAL.PONE.0041254
        • Clark S.R.
        • Ma A.C.
        • Tavener S.A.
        • McDonald B.
        • Goodarzi Z.
        • Kelly M.M.
        • Patel K.D.
        • Chakrabarti S.
        • McAvoy E.
        • Sinclair G.D.
        • Keys E.M.
        • Allen-Vercoe E.
        • DeVinney R.
        • Doig C.J.
        • Green F.H.Y.
        • Kubes P.
        Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood.
        Nat. Med. 2007; 13: 463-469https://doi.org/10.1038/NM1565
        • Koupenova M.
        • Vitseva O.
        • MacKay C.R.
        • Beaulieu L.M.
        • Benjamin E.J.
        • Mick E.
        • Kurt-Jones E.A.
        • Ravid K.
        • Freedman J.E.
        Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis.
        Blood. 2014; 124: 791https://doi.org/10.1182/BLOOD-2013-11-536003
        • Aslam R.
        • Speck E.R.
        • Kim M.
        • Crow A.R.
        • Bang K.W.A.
        • Nestel F.P.
        • Ni H.
        • Lazarus A.H.
        • Freedman J.
        • Semple J.W.
        Platelet toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-alpha production in vivo.
        Blood. 2006; 107: 637-641https://doi.org/10.1182/BLOOD-2005-06-2202
        • Vogel S.
        • Bodenstein R.
        • Chen Q.
        • Feil S.
        • Feil R.
        • Rheinlaender J.
        • Schäffer T.E.
        • Bohn E.
        • Frick J.S.
        • Borst O.
        • Münzer P.
        • Walker B.
        • Markel J.
        • Csanyi G.
        • Pagano P.J.
        • Loughran P.
        • Jessup M.E.
        • Watkins S.C.
        • Bullock G.C.
        • Sperry J.L.
        • Zuckerbraun B.S.
        • Billiar T.R.
        • Lotze M.T.
        • Gawaz M.
        • Neal M.D.
        Platelet-derived HMGB1 is a critical mediator of thrombosis.
        J. Clin. Invest. 2015; 125: 4638-4654https://doi.org/10.1172/JCI81660
        • Schaefer L.
        Complexity of danger: the diverse nature of damage-associated molecular patterns.
        J. Biol. Chem. 2014; 289: 35237-35245https://doi.org/10.1074/JBC.R114.619304
        • Maynard D.M.
        • Heijnen H.F.G.
        • Horne M.K.
        • White J.G.
        • Gahl W.A.
        Proteomic analysis of platelet alpha-granules using mass spectrometry.
        J. Thromb. Haemost. 2007; 5: 1945-1955https://doi.org/10.1111/J.1538-7836.2007.02690.X
        • Schmaier A.H.
        • Smith P.M.
        • Colman R.W.
        • Platelet C1- inhibitor.
        A secreted alpha-granule protein.
        J. Clin. Invest. 1985; 75: 242-250https://doi.org/10.1172/JCI111680
        • Devine D.V.
        • Rosse W.F.
        Regulation of the activity of platelet-bound C3 convertase of the alternative pathway of complement by platelet factor H.
        Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 5873-5877https://doi.org/10.1073/PNAS.84.16.5873
        • Peerschke E.I.
        • Yin W.
        • Ghebrehiwet B.
        Complement activation on platelets: implications for vascular inflammation and thrombosis.
        Mol. Immunol. 2010; 47: 2170-2175https://doi.org/10.1016/J.MOLIMM.2010.05.009
        • Koupenova M.
        • Corkrey H.A.
        • Vitseva O.
        • Manni G.
        • Pang C.J.
        • Clancy L.
        • Yao C.
        • Rade J.
        • Levy D.
        • Wang J.P.
        • Finberg R.W.
        • Kurt-Jones E.A.
        • Freedman J.E.
        The role of platelets in mediating a response to human influenza infection.
        Nat. Commun. 2019; https://doi.org/10.1038/s41467-019-09607-x
        • Cugno M.
        • Cicardi M.
        • Bottasso B.
        • Coppola R.
        • Paonessa R.
        • Mannucci P.M.
        • Agostoni A.
        Activation of the coagulation cascade in C1-inhibitor deficiencies - PubMed.
        Blood. 1997; 89 (accessed July 11, 2022): 3213-3218
        • Kim H.
        • Conway E.M.
        Platelets and complement cross-talk in early atherogenesis.
        Front. Cardiovasc. Med. 2019; 6https://doi.org/10.3389/FCVM.2019.00131
        • Nayak A.
        • Ferluga J.
        • Tsolaki A.G.
        • Kishore U.
        The non-classical functions of the classical complement pathway recognition subcomponent C1q.
        Immunol. Lett. 2010; 131: 139-150https://doi.org/10.1016/J.IMLET.2010.03.012
        • Bin Wang H.
        • Ricklin D.
        • Lambris J.D.
        Complement-activation fragment C4a mediates effector functions by binding as untethered agonist to protease-activated receptors 1 and 4.
        Proc. Natl. Acad. Sci. U. S. A. 2017; 114: 10948-10953https://doi.org/10.1073/PNAS.1707364114
        • Koupenova M.
        • Livada A.C.
        • Morrell C.N.
        Platelet and megakaryocyte roles in innate and adaptive immunity.
        Circ. Res. 2022; 130: 288-308https://doi.org/10.1161/CIRCRESAHA.121.319821
        • Zalavary S.
        • Grenegård M.
        • Stendahl O.
        • Bengtsson T.
        Platelets enhance Fc(gamma) receptor-mediated phagocytosis and respiratory burst in neutrophils: the role of purinergic modulation and actin polymerization.
        J. Leukoc. Biol. 1996; 60: 58-68https://doi.org/10.1002/JLB.60.1.58
        • Wu B.
        • Liu G.
        • Yube K.
        • Ueno M.
        • Tanaka S.
        • Onodera M.
        • Jin Z.
        • Sakamoto H.
        Effects of platelet release products on neutrophilic activity in human whole blood.
        Inflamm. Res. 2009; 58: 321-328https://doi.org/10.1007/S00011-009-8230-Y
        • Brandt E.
        • Petersen F.
        • Ludwig A.
        • Ehlert J.E.
        • Bock L.
        • Flad H.D.
        The beta-thromboglobulins and platelet factor 4: blood platelet-derived CXC chemokines with divergent roles in early neutrophil regulation.
        J. Leukoc. Biol. 2000; 67: 471-478https://doi.org/10.1002/JLB.67.4.471
        • McDonald B.
        • Urrutia R.
        • Yipp B.G.
        • Jenne C.N.
        • Kubes P.
        Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis.
        Cell Host Microbe. 2012; 12 (PMID: 22980329): 324-333https://doi.org/10.1016/j.chom.2012.06.011
        • Li J.
        • Kim K.
        • Barazia A.
        • Tseng A.
        • Cho J.
        Platelet-neutrophil interactions under thromboinflammatory conditions.
        Cell. Mol. Life Sci. 2015; 72: 2627-2643https://doi.org/10.1007/s00018-015-1845-y
        • Ma Y.Q.
        • Plow E.F.
        • Geng J.G.
        P-selectin binding to P-selectin glycoprotein ligand-1 induces an intermediate state of alphaMbeta2 activation and acts cooperatively with extracellular stimuli to support maximal adhesion of human neutrophils.
        Blood. 2004; 104: 2549-2556https://doi.org/10.1182/BLOOD-2004-03-1108
        • Lam F.W.
        • Burns A.R.
        • Smith C.W.
        • Rumbaut R.E.
        Platelets enhance neutrophil transendothelial migration via P-selectin glycoprotein ligand-1.
        Am. J. Physiol. Heart Circ. Physiol. 2011; 300https://doi.org/10.1152/AJPHEART.00491.2010
        • Simon D.I.
        • Chen Z.
        • Xu H.
        • Li C.Q.
        • Dong J.F.
        • McIntire L.V.
        • Ballantyne C.M.
        • Zhang L.
        • Furman M.I.
        • Berndt M.C.
        • López J.A.
        Platelet glycoprotein ibalpha is a counterreceptor for the leukocyte integrin mac-1 (CD11b/CD18).
        J. Exp. Med. 2000; 192: 193-204https://doi.org/10.1084/JEM.192.2.193
        • Khan S.Y.
        • Kelher M.R.
        • Heal J.M.
        • Blumberg N.
        • Boshkov L.K.
        • Phipps R.
        • Gettings K.F.
        • McLaughlin N.J.
        • Silliman C.C.
        Soluble CD40 ligand accumulates in stored blood components, primes neutrophils through CD40, and is a potential cofactor in the development of transfusion-related acute lung injury.
        Blood. 2006; 108: 2455-2462https://doi.org/10.1182/BLOOD-2006-04-017251
        • von Hundelshausen P.
        • Schmitt M.M.N.
        Platelets and their chemokines in atherosclerosis-clinical applications.
        Front. Physiol. 2014; 5https://doi.org/10.3389/FPHYS.2014.00294
        • Jickling G.C.
        • Liu D.Z.
        • Ander B.P.
        • Stamova B.
        • Zhan X.
        • Sharp F.R.
        Targeting neutrophils in ischemic stroke: translational insights from experimental studies.
        J. Cereb. Blood Flow Metab. 2015; 35: 888-901https://doi.org/10.1038/JCBFM.2015.45
        • Zarbock A.
        • Singbartl K.
        • Ley K.
        Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation.
        J. Clin. Invest. 2006; 116: 3211-3219https://doi.org/10.1172/JCI29499
        • Vowinkel T.
        • Anthoni C.
        • Wood K.C.
        • Stokes K.Y.
        • Russell J.
        • Gray L.
        • Bharwani S.
        • Senninger N.
        • Alexander J.S.
        • Krieglstein C.F.
        • Grisham M.B.
        • Granger D.N.
        CD40-CD40 ligand mediates the recruitment of leukocytes and platelets in the inflamed murine colon.
        Gastroenterology. 2007; 132: 955-965https://doi.org/10.1053/J.GASTRO.2006.12.027
        • Pamuk G.E.
        • Vural Ö.
        • Turgut B.
        • Demir M.
        • Ümit H.
        • Tezel A.
        Increased circulating platelet-neutrophil, platelet-monocyte complexes, and platelet activation in patients with ulcerative colitis: a comparative study.
        Am. J. Hematol. 2006; 81: 753-759https://doi.org/10.1002/AJH.20655
        • Ludwig R.J.
        • Schultz J.E.
        • Boehncke W.H.
        • Podda M.
        • Tandi C.
        • Krombach F.
        • Baatz H.
        • Kaufmann R.
        • Von Andrian U.H.
        • Zollner T.M.
        Activated, not resting, platelets increase leukocyte rolling in murine skin utilizing a distinct set of adhesion molecules.
        J. Invest. Dermatol. 2004; 122: 830-836https://doi.org/10.1111/J.0022-202X.2004.22318.X
        • Hara T.
        • Shimizu K.
        • Ogawa F.
        • Yanaba K.
        • Iwata Y.
        • Muroi E.
        • Takenaka M.
        • Komura K.
        • Hasegawa M.
        • Fujimoto M.
        • Sato S.
        Platelets control leukocyte recruitment in a murine model of cutaneous arthus reaction.
        Am. J. Pathol. 2010; 176: 259-269https://doi.org/10.2353/AJPATH.2010.081117
        • Carestia A.
        • Kaufman T.
        • Schattner M.
        Platelets: new bricks in the building of neutrophil extracellular traps.
        Front. Immunol. 2016; 7: 271https://doi.org/10.3389/fimmu.2016.00271
        • Cools-Lartigue J.
        • Spicer J.
        • Najmeh S.
        • Ferri L.
        Neutrophil extracellular traps in cancer progression.
        Cell. Mol. Life Sci. 2014; 71: 4179-4194https://doi.org/10.1007/S00018-014-1683-3
        • Savchenko A.S.
        • Martinod K.
        • Seidman M.A.
        • Wong S.L.
        • Borissoff J.I.
        • Piazza G.
        • Libby P.
        • Goldhaber S.Z.
        • Mitchell R.N.
        • Wagner D.D.
        Neutrophil extracellular traps form predominantly during the organizing stage of human venous thromboembolism development.
        J. Thromb. Haemost. 2014; 12: 860-870https://doi.org/10.1111/JTH.12571
        • Liaw P.C.
        • Ito T.
        • Iba T.
        • Thachil J.
        • Zeerleder S.
        DAMP and DIC: the role of extracellular DNA and DNA-binding proteins in the pathogenesis of DIC.
        Blood Rev. 2016; 30: 257-261https://doi.org/10.1016/J.BLRE.2015.12.004
        • Diaz J.A.
        • Fuchs T.A.
        • Jackson T.O.
        • Hovinga J.A.K.
        • Lämmle B.
        • Henke P.K.
        • Myers D.D.
        • Wagner D.D.
        • Wakefield T.W.
        Plasma DNA is elevated in patients with deep vein thrombosis.
        J. Vasc. Surgery. Venous Lymphat. Disord. 2013; 1https://doi.org/10.1016/J.JVSV.2012.12.002
        • Fuchs T.A.
        • Brill A.
        • Duerschmied D.
        • Schatzberg D.
        • Monestier M.
        • Myers D.D.
        • Wrobleski S.K.
        • Wakefield T.W.
        • Hartwig J.H.
        • Wagner D.D.
        Extracellular DNA traps promote thrombosis.
        Proc. Natl. Acad. Sci. 2010; 107: 15880-15885https://doi.org/10.1073/pnas.1005743107
        • Saffarzadeh M.
        • Juenemann C.
        • Queisser M.A.
        • Lochnit G.
        • Barreto G.
        • Galuska S.P.
        • Lohmeyer J.
        • Preissner K.T.
        Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones.
        PLoS One. 2012; 7e32366https://doi.org/10.1371/journal.pone.0032366
        • Cools-Lartigue J.
        • Spicer J.
        • McDonald B.
        • Gowing S.
        • Chow S.
        • Giannias B.
        • Bourdeau F.
        • Kubes P.
        • Ferri L.
        Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis.
        J. Clin. Invest. 2013; 123: 3446-3458https://doi.org/10.1172/JCI67484
        • Demers M.
        • Krause D.S.
        • Schatzberg D.
        • Martinod K.
        • Voorhees J.R.
        • Fuchs T.A.
        • Scadden D.T.
        • Wagner D.D.
        Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis.
        Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 13076-13081https://doi.org/10.1073/PNAS.1200419109
        • Lande R.
        • Ganguly D.
        • Facchinetti V.
        • Frasca L.
        • Conrad C.
        • Gregorio J.
        • Meller S.
        • Chamilos G.
        • Sebasigari R.
        • Riccieri V.
        • Bassett R.
        • Amuro H.
        • Fukuhara S.
        • Ito T.
        • Liu Y.J.
        • Gilliet M.
        Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus.
        Sci. Transl. Med. 2011; 3https://doi.org/10.1126/SCITRANSLMED.3001180
        • Garcia-Romo G.S.
        • Caielli S.
        • Vega B.
        • Connolly J.
        • Allantaz F.
        • Xu Z.
        • Punaro M.
        • Baisch J.
        • Guiducci C.
        • Coffman R.L.
        • Barrat F.J.
        • Banchereau J.
        • Pascual V.
        Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus.
        Sci. Transl. Med. 2011; 3https://doi.org/10.1126/SCITRANSLMED.3001201
        • Lood C.
        • Blanco L.P.
        • Purmalek M.M.
        • Carmona-Rivera C.
        • De Ravin S.S.
        • Smith C.K.
        • Malech H.L.
        • Ledbetter J.A.
        • Elkon K.B.
        • Kaplan M.J.
        Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease.
        Nat. Med. 2016; 22: 146-153https://doi.org/10.1038/NM.4027
        • Thomas G.M.
        • Carbo C.
        • Curtis B.R.
        • Martinod K.
        • Mazo I.B.
        • Schatzberg D.
        • Cifuni S.M.
        • Fuchs T.A.
        • Von Andrian U.H.
        • Hartwig J.H.
        • Aster R.H.
        • Wagner D.D.
        Extracellular DNA traps are associated with the pathogenesis of TRALI in humans and mice.
        Blood. 2012; 119: 6335-6343https://doi.org/10.1182/BLOOD-2012-01-405183
        • de Boer O.J.
        • Li X.
        • Teeling P.
        • Mackaay C.
        • Ploegmakers H.J.
        • van der Loos C.M.
        • Daemen M.J.
        • de Winter R.J.
        • van der Wal A.C.
        Neutrophils, neutrophil extracellular traps and interleukin-17 associate with the organisation of thrombi in acute myocardial infarction.
        Thromb. Haemost. 2013; 109: 290-297https://doi.org/10.1160/TH12-06-0425
        • Megens R.T.A.
        • Vijayan S.
        • Lievens D.
        • Döring Y.
        • van Zandvoort M.A.M.J.
        • Grommes J.
        • Weber C.
        • Soehnlein O.
        Presence of luminal neutrophil extracellular traps in atherosclerosis.
        Thromb. Haemost. 2012; 107: 597-598https://doi.org/10.1160/TH11-09-0650
        • da Martins P.A.C.
        • van Gils J.M.
        • Mol A.
        • Hordijk P.L.
        • Zwaginga J.J.
        Platelet binding to monocytes increases the adhesive properties of monocytes by up-regulating the expression and functionality of β 1 and β 2 integrins.
        J. Leukoc. Biol. 2006; 79: 499-507https://doi.org/10.1189/jlb.0605318
        • Neumann F.J.
        • Marx N.
        • Gawaz M.
        • Brand K.
        • Ott I.
        • Rokitta C.
        • Sticherling C.
        • Meinl C.
        • May A.
        • Schömig A.
        Induction of cytokine expression in leukocytes by binding of thrombin-stimulated platelets.
        Circulation. 1997; 95: 2387-2394https://doi.org/10.1161/01.CIR.95.10.2387
        • McEver R.P.
        • Cummings R.D.
        Role of PSGL-1 binding to selectins in leukocyte recruitment.
        J. Clin. Invest. 1997; 100 (accessed September 20, 2022): S97-S103
        • Santoso S.
        • Sachs U.J.H.
        • Kroll H.
        • Linder M.
        • Ruf A.
        • Preissner K.T.
        • Chavakis T.
        The junctional adhesion molecule 3 (JAM-3) on human platelets is a counterreceptor for the leukocyte integrin mac-1.
        J. Exp. Med. 2002; 196: 679-691https://doi.org/10.1084/JEM.20020267
        • Weyrich A.S.
        • Elstad M.R.
        • McEver R.P.
        • McIntyre T.M.
        • Moore K.L.
        • Morrissey J.H.
        • Prescott S.M.
        • Zimmerman G.A.
        Activated platelets signal chemokine synthesis by human monocytes.
        J. Clin. Invest. 1996; 97: 1525-1534https://doi.org/10.1172/JCI118575
        • Weyrich A.S.
        • McIntyre T.M.
        • McEver R.P.
        • Prescott S.M.
        • Zimmerman G.A.
        Monocyte tethering by P-selectin regulates monocyte chemotactic protein-1 and tumor necrosis factor-alpha secretion. Signal integration and NF-kappa B translocation.
        J. Clin. Invest. 1995; 95: 2297-2303https://doi.org/10.1172/JCI117921
        • Scheuerer B.
        • Ernst M.
        • Dürrbaum-Landmann I.
        • Fleischer J.
        • Grage-Griebenow E.
        • Brandt E.
        • Flad H.D.
        • Petersen F.
        The CXC-chemokine platelet factor 4 promotes monocyte survival and induces monocyte differentiation into macrophages.
        Blood. 2000; 95: 1158-1166https://doi.org/10.1182/blood.v95.4.1158.004k31_1158_1166
        • Carestia A.
        • Mena H.A.
        • Olexen C.M.
        • Ortiz Wilczyñski J.M.
        • Negrotto S.
        • Errasti A.E.
        • Gómez R.M.
        • Jenne C.N.
        • Carrera Silva E.A.
        • Schattner M.
        Platelets promote macrophage polarization toward pro-inflammatory phenotype and increase survival of septic mice.
        Cell Rep. 2019; 28: 896-908.e5https://doi.org/10.1016/J.CELREP.2019.06.062
        • Blanchet X.
        • Cesarek K.
        • Brandt J.
        • Herwald H.
        • Teupser D.
        • Küchenhoff H.
        • Karshovska E.
        • Mause S.F.
        • Siess W.
        • Wasmuth H.
        • Soehnlein O.
        • Koenen R.R.
        • Weber C.
        • von Hundelshausen P.
        Inflammatory role and prognostic value of platelet chemokines in acute coronary syndrome.
        Thromb. Haemost. 2014; 112: 1277-1287https://doi.org/10.1160/TH14-02-0139
        • Furman M.I.
        • Barnard M.R.
        • Krueger L.A.
        • Fox M.L.
        • Shilale E.A.
        • Lessard D.M.
        • Marchese P.
        • Frelinger A.L.
        • Goldberg R.J.
        • Michelson A.D.
        Circulating monocyte-platelet aggregates are an early marker of acute myocardial infarction.
        J. Am. Coll. Cardiol. 2001; 38: 1002-1006https://doi.org/10.1016/S0735-1097(01)01485-1
        • May A.E.
        • Neumann F.J.
        • Gawaz M.
        • Ott I.
        • Walter H.
        • Schomig A.
        Reduction of monocyte-platelet interaction and monocyte activation in patients receiving antiplatelet therapy after coronary stent implantation.
        Eur. Heart J. 1997; 18: 1913-1920https://doi.org/10.1093/OXFORDJOURNALS.EURHEARTJ.A015200
        • Heinzmann A.C.A.
        • Coenen D.M.
        • Vajen T.
        • Cosemans J.M.E.M.
        • Koenen R.R.
        Combined antiplatelet therapy reduces the proinflammatory properties of activated platelets, TH open companion J. To.
        Thromb. Haemost. 2021; 5: e533-e542https://doi.org/10.1055/A-1682-3415
        • Brennan M.P.
        • Loughman A.
        • Devocelle M.
        • Arasu S.
        • Chubb A.J.
        • Foster T.J.
        • Cox D.
        Elucidating the role of Staphylococcus epidermidis serine-aspartate repeat protein G in platelet activation.
        J. Thromb. Haemost. 2009; 7: 1364-1372https://doi.org/10.1111/J.1538-7836.2009.03495.X
        • Plummer C.
        • Wu H.
        • Kerrigan S.W.
        • Meade G.
        • Cox D.
        • Douglas C.W.I.
        A serine-rich glycoprotein of streptococcus sanguis mediates adhesion to platelets via GPIb.
        Br. J. Haematol. 2005; 129: 101-109https://doi.org/10.1111/J.1365-2141.2005.05421.X
        • Bensing B.A.
        • López J.A.
        • Sullam P.M.
        The Streptococcus gordonii surface proteins GspB and hsa mediate binding to sialylated carbohydrate epitopes on the platelet membrane glycoprotein ibalpha.
        Infect. Immun. 2004; 72: 6528-6537https://doi.org/10.1128/IAI.72.11.6528-6537.2004
        • Siboo I.R.
        • Chambers H.F.
        • Sullam P.M.
        Role of SraP, a serine-rich surface protein of Staphylococcus aureus, in binding to human platelets.
        Infect. Immun. 2005; 73: 2273-2280https://doi.org/10.1128/IAI.73.4.2273-2280.2005
        • Miajlovic H.
        • Zapotoczna M.
        • Geoghegan J.A.
        • Kerrigan S.W.
        • Speziale P.
        • Foster T.J.
        Direct interaction of iron-regulated surface determinant IsdB of Staphylococcus aureus with the GPIIb/IIIa receptor on platelets.
        Microbiology. 2010; 156: 920-928https://doi.org/10.1099/MIC.0.036673-0
        • Petersen H.J.
        • Keane C.
        • Jenkinson H.F.
        • Vickerman M.M.
        • Jesionowski A.
        • Waterhouse J.C.
        • Cox D.
        • Kerrigan S.W.
        Human platelets recognize a novel surface protein, PadA, on Streptococcus gordonii through a unique interaction involving fibrinogen receptor GPIIbIIIa.
        Infect. Immun. 2010; 78: 413-422https://doi.org/10.1128/IAI.00664-09
        • McDevitt D.
        • Francois P.
        • Vaudaux P.
        • Foster T.J.
        Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus.
        Mol. Microbiol. 1994; 11: 237-248https://doi.org/10.1111/J.1365-2958.1994.TB00304.X
        • Eldhin D.N.
        • Perkins S.
        • Francois P.
        • Vaudaux P.
        • Höök M.
        • Foster T.J.
        Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus.
        Mol. Microbiol. 1998; 30: 245-257https://doi.org/10.1046/J.1365-2958.1998.01050.X
        • Flock J.I.
        • Fröman G.
        • Jönsson K.
        • Guss B.
        • Signäs C.
        • Nilsson B.
        • Raucci G.
        • Höök M.
        • Wadström T.
        • Lindberg M.
        Cloning and expression of the gene for a fibronectin-binding protein from Staphylococcus aureus.
        EMBO J. 1987; 6: 2351-2357https://doi.org/10.1002/J.1460-2075.1987.TB02511.X
        • Mitchell J.
        • Tristan A.
        • Foster T.J.
        Characterization of the fibrinogen-binding surface protein fbl of staphylococcus lugdunensis.
        Microbiology. 2004; 150: 3831-3841https://doi.org/10.1099/MIC.0.27337-0
        • O’Seaghdha M.
        • Van Schooten C.J.
        • Kerrigan S.W.
        • Emsley J.
        • Silverman G.J.
        • Cox D.
        • Lenting P.J.
        • Foster T.J.
        Staphylococcus aureus protein a binding to von willebrand factor A1 domain is mediated by conserved IgG binding regions.
        FEBS J. 2006; 273: 4831-4841https://doi.org/10.1111/J.1742-4658.2006.05482.X
        • Claes J.
        • Vanassche T.
        • Peetermans M.
        • Liesenborghs L.
        • Vandenbriele C.
        • Vanhoorelbeke K.
        • Missiakas D.
        • Schneewind O.
        • Hoylaerts M.F.
        • Heying R.
        • Verhamme P.
        Adhesion of Staphylococcus aureus to the vessel wall under flow is mediated by von willebrand factor-binding protein.
        Blood. 2014; 124: 1669-1676https://doi.org/10.1182/BLOOD-2014-02-558890
        • Palankar R.
        • Kohler T.P.
        • Krauel K.
        • Wesche J.
        • Hammerschmidt S.
        • Greinacher A.
        Platelets kill bacteria by bridging innate and adaptive immunity via platelet factor 4 and FcγRIIA.
        J. Thromb. Haemost. 2018; 16: 1187-1197https://doi.org/10.1111/JTH.13955
        • Sullam P.M.
        • Hyun W.C.
        • Szöllösi J.
        • Dong J.F.
        • Foss W.M.
        • López J.A.
        Physical proximity and functional interplay of the glycoprotein ib-IX-V complex and the fc receptor FcgammaRIIA on the platelet plasma membrane.
        J. Biol. Chem. 1998; 273: 5331-5336https://doi.org/10.1074/JBC.273.9.5331
        • Boylan B.
        • Gao C.
        • Rathore V.
        • Gill J.C.
        • Newman D.K.
        • Newman P.J.
        Identification of FcgammaRIIa as the ITAM-bearing receptor mediating alphaIIbbeta3 outside-in integrin signaling in human platelets.
        Blood. 2008; 112: 2780-2786https://doi.org/10.1182/BLOOD-2008-02-142125
        • Arvand M.
        • Bhakdi B.
        • Preissner K.T.
        Staphylococcus aureus alpha-toxin attack on human platelets promotes assembly of the prothrombinase complex - PubMed.
        J. Biol. Chem. 1990; 265 (accessed July 6, 2022): 14377-14381
        • Surewaard B.G.J.
        • Thanabalasuriar A.
        • Zeng Z.
        • Tkaczyk C.
        • Cohen T.S.
        • Bardoel B.W.
        • Jorch S.K.
        • Deppermann C.
        • Bubeck Wardenburg J.
        • Davis R.P.
        • Jenne C.N.
        • Stover K.C.
        • Sellman B.R.
        • Kubes P.
        α-toxin induces platelet aggregation and liver injury during Staphylococcus aureus sepsis.
        Cell Host Microbe. 2018; 24: 271-284.e3https://doi.org/10.1016/j.chom.2018.06.017
        • Bryant A.E.
        • Bayer C.R.
        • Chen R.Y.Z.
        • Guth P.H.
        • Wallace R.J.
        • Stevens D.L.
        Vascular dysfunction and ischemic destruction of tissue in streptococcus pyogenes infection: the role of streptolysin O-induced platelet/neutrophil complexes.
        J. Infect. Dis. 2005; 192: 1014-1022https://doi.org/10.1086/432729
        • Yeaman M.R.
        Platelets: at the nexus of antimicrobial defence.
        Nat. Rev. Microbiol. 2014; 12: 426-437https://doi.org/10.1038/NRMICRO3269
        • Krijgsveld J.
        • Zaat S.A.J.
        • Meeldijk J.
        • Van Veelen P.A.
        • Fang G.
        • Poolman B.
        • Brandt E.
        • Ehlert J.E.
        • Kuijpers A.J.
        • Engbers G.H.M.
        • Feijen J.
        • Dankert J.
        Thrombocidins, microbicidal proteins from human blood platelets, are C-terminal deletion products of CXC chemokines.
        J. Biol. Chem. 2000; 275: 20374-20381https://doi.org/10.1074/JBC.275.27.20374
        • Kraemer B.F.
        • Campbell R.A.
        • Schwertz H.
        • Cody M.J.
        • Franks Z.
        • Tolley N.D.
        • Kahr W.H.A.
        • Lindemann S.
        • Seizer P.
        • Yost C.C.
        • Zimmerman G.A.
        • Weyrich A.S.
        Novel anti-bacterial activities of β-defensin 1 in human platelets: suppression of pathogen growth and signaling of neutrophil extracellular trap formation.
        PLoS Pathog. 2011; 7https://doi.org/10.1371/JOURNAL.PPAT.1002355
        • Valle-Jiménez X.
        • Ramírez-Cosmes A.
        • Aquino-Domínguez A.S.
        • Sánchez-Peña F.
        • Bustos-Arriaga J.
        • Romero-Tlalolini M.D.L.Á.
        • Torres-Aguilar H.
        • Serafín-López J.
        • Aguilar Ruíz S.R.
        Human platelets and megakaryocytes express defensin alpha 1.
        Platelets. 2020; 31: 344-354https://doi.org/10.1080/09537104.2019.1615612
        • Kasirer-Friede A.
        • Kahn M.L.
        • Shattil S.J.
        Platelet integrins and immunoreceptors.
        Immunol. Rev. 2007; 218: 247-264https://doi.org/10.1111/J.1600-065X.2007.00532.X
        • Gavrilovskaya I.N.
        • Gorbunova E.E.
        • Mackow E.R.
        Pathogenic hantaviruses direct the adherence of quiescent platelets to infected endothelial cells.
        J. Virol. 2010; 84: 4832-4839https://doi.org/10.1128/JVI.02405-09
        • Shimony N.
        • Elkin G.
        • Kolodkin-Gal D.
        • Krasny L.
        • Urieli-Shoval S.
        • Haviv Y.S.
        Analysis of adenoviral attachment to human platelets.
        Virol. J. 2009; 6https://doi.org/10.1186/1743-422X-6-25
        • Fleming F.E.
        • Graham K.L.
        • Takada Y.
        • Coulson B.S.
        Determinants of the specificity of rotavirus interactions with the alpha2beta1 integrin.
        J. Biol. Chem. 2011; 286: 6165-6174https://doi.org/10.1074/JBC.M110.142992
        • Negrotto S.
        • Jaquenod De Giusti C.
        • Rivadeneyra L.
        • Ure A.E.
        • Mena H.A.
        • Schattner M.
        • Gomez R.M.
        Platelets interact with coxsackieviruses B and have a critical role in the pathogenesis of virus-induced myocarditis.
        J. Thromb. Haemost. 2015; 13: 271-282https://doi.org/10.1111/JTH.12782
        • Zahn A.
        • Jennings N.
        • Ouwehand W.H.
        • Allain J.P.
        Hepatitis C virus interacts with human platelet glycoprotein VI.
        J. Gen. Virol. 2006; 87: 2243-2251https://doi.org/10.1099/VIR.0.81826-0
        • Ahmad A.
        • Menezes J.
        Binding of the epstein-barr virus to human platelets causes the release of transforming growth factor-beta. | the journal of immunology.
        J. Immunol. 1997; (accessed July 6, 2022): 3984-3988
        • Clemetson K.J.
        • Clemetson J.M.
        • Proudfoot A.E.
        • Power C.A.
        • Baggiolini M.
        • Wells T.N.
        Functional expression of CCR1, CCR3, CCR4, and CXCR4 chemokine receptors on human platelets - PubMed.
        Blood. 2000; 96 (accessed July 6, 2022): 4046-4054
        • Chaipan C.
        • Soilleux E.J.
        • Simpson P.
        • Hofmann H.
        • Gramberg T.
        • Marzi A.
        • Geier M.
        • Stewart E.A.
        • Eisemann J.
        • Steinkasserer A.
        • Suzuki-Inoue K.
        • Fuller G.L.
        • Pearce A.C.
        • Watson S.P.
        • Hoxie J.A.
        • Baribaud F.
        • Pöhlmann S.
        DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 capture by platelets.
        J. Virol. 2006; 80: 8951-8960https://doi.org/10.1128/JVI.00136-06
        • Wang J.
        • Zhang W.
        • Nardi M.A.
        • Li Z.
        HIV-1 tat-induced platelet activation and release of CD154 contribute to HIV-1-associated autoimmune thrombocytopenia.
        J. Thromb. Haemost. 2011; 9: 562-573https://doi.org/10.1111/J.1538-7836.2010.04168.X
        • Sung P.S.
        • Huang T.F.
        • Hsieh S.L.
        Extracellular vesicles from CLEC2-activated platelets enhance dengue virus-induced lethality via CLEC5A/TLR2.
        Nat. Commun. 2019; 10https://doi.org/10.1038/S41467-019-10360-4
        • Hottz E.D.
        • Oliveira M.F.
        • Nunes P.C.G.
        • Nogueira R.M.R.
        • Valls-de-Souza R.
        • Da Poian A.T.
        • Weyrich A.S.
        • Zimmerman G.A.
        • Bozza P.T.
        • Bozza F.A.
        Dengue induces platelet activation, mitochondrial dysfunction and cell death through mechanisms that involve DC-SIGN and caspases.
        J. Thromb. Haemost. 2013; 11: 951-962https://doi.org/10.1111/JTH.12178
        • Chao C.H.
        • Wu W.C.
        • Lai Y.C.
        • Tsai P.J.
        • Perng G.C.
        • Lin Y.S.
        • Yeh T.M.
        Dengue virus nonstructural protein 1 activates platelets via toll-like receptor 4, leading to thrombocytopenia and hemorrhage.
        PLoS Pathog. 2019; 15https://doi.org/10.1371/JOURNAL.PPAT.1007625
        • Wang T.T.
        • Sewatanon J.
        • Memoli M.J.
        • Wrammert J.
        • Bournazos S.
        • Bhaumik S.K.
        • Pinsky B.A.
        • Chokephaibulkit K.
        • Onlamoon N.
        • Pattanapanyasat K.
        • Taubenberger J.K.
        • Ahmed R.
        • Ravetch J.V.
        IgG antibodies to dengue enhanced for FcγRIIIA binding determine disease severity.
        Science. 2017; 355: 395-398https://doi.org/10.1126/SCIENCE.AAI8128
        • Simon A.Y.
        • Sutherland M.R.
        • Pryzdial E.L.G.
        Dengue virus binding and replication by platelets.
        Blood. 2015; 126: 378-385https://doi.org/10.1182/BLOOD-2014-09-598029
        • Ariede J.R.
        • de Moura Campos M.I.
        • Pardini G.F.
        • Silva R.M.T.Grotto
        Platelets can be a biological compartment for the hepatitis C virus.
        Braz. J. Microbiol. 2015; 46: 627-629https://doi.org/10.1590/S1517-838246220140553
        • Padovani J.L.
        • Corvino S.M.
        • Drexler J.F.
        • Silva G.F.
        • de Pardini M.I.M.C.
        • Grotto R.M.T.
        In vitro detection of hepatitis C virus in platelets from uninfected individuals exposed to the viru.
        Rev. Soc. Bras. Med. Trop. 2013; 46: 154-155https://doi.org/10.1590/0037-8682-1627-2013
        • Adilson José de Almeida
        Marilza campos-de-magalhães, carlos eduardo brandão-mello, rosane vieira de oliveira, clara fumiko tachibana yoshida, elisabeth lampe, detection of hepatitis C virus in platelets: evaluating its relationship to viral and host factors - PubMed.
        Hepato-Gastroenterology. 2007; 54 (accessed July 6, 2022): 964-968
        • Kar M.
        • Singla M.
        • Chandele A.
        • Kabra S.K.
        • Lodha R.
        • Medigeshi G.R.
        Dengue virus entry and replication does not Lead to productive infection in platelets.
        Open Forum Infect. Dis. 2017; 4https://doi.org/10.1093/OFID/OFX051
        • Mohan K.V.K.
        • Rao S.S.
        • Atreya C.D.
        Antiviral activity of selected antimicrobial peptides against vaccinia virus.
        Antivir. Res. 2010; 86: 306-311https://doi.org/10.1016/J.ANTIVIRAL.2010.03.012
        • Solomon Tsegaye T.
        • Gnirß K.
        • Rahe-Meyer N.
        • Kiene M.
        • Krämer-Kühl A.
        • Behrens G.
        • Münch J.
        • Pöhlmann S.
        Platelet activation suppresses HIV-1 infection of T cells.
        Retrovirology. 2013; 10https://doi.org/10.1186/1742-4690-10-48
        • Auerbach D.J.
        • Lin Y.
        • Miao H.
        • Cimbro R.
        • DiFiore M.J.
        • Gianolini M.E.
        • Furci L.
        • Biswas P.
        • Fauci A.S.
        • Lusso P.
        Identification of the platelet-derived chemokine CXCL4/PF-4 as a broad-spectrum HIV-1 inhibitor.
        Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 9569-9574https://doi.org/10.1073/PNAS.1207314109
        • Schwartzkopff F.
        • Grimm T.A.
        • Lankford C.S.R.
        • Fields K.
        • Wang J.
        • Brandt E.
        • Clouse K.A.M.
        Platelet factor 4 (CXCL4) facilitates human macrophage infection with HIV-1 and potentiates virus replication.
        Innate Immun. 2009; 15: 368-379https://doi.org/10.1177/1753425909106171
        • Guo L.
        • Feng K.
        • Wang Y.C.
        • Mei J.J.
        • Ning R.T.
        • Zheng H.W.
        • Wang J.J.
        • Worthen G.S.
        • Wang X.
        • Song J.
        • Li Q.H.
        • Liu L.D.
        Critical role of CXCL4 in the lung pathogenesis of influenza (H1N1) respiratory infection.
        Mucosal Immunol. 2017; 10: 1529-1541https://doi.org/10.1038/MI.2017.1
        • Ojha A.
        • Bhasym A.
        • Mukherjee S.
        • Annarapu G.K.
        • Bhakuni T.
        • Akbar I.
        • Seth T.
        • Vikram N.K.
        • Vrati S.
        • Basu A.
        • Bhattacharyya S.
        • Guchhait P.
        Platelet factor 4 promotes rapid replication and propagation of dengue and japanese encephalitis viruses.
        EBioMedicine. 2019; 39: 332-347https://doi.org/10.1016/J.EBIOM.2018.11.049
        • Tilton C.
        • Clippinger A.J.
        • Maguire T.
        • Alwine J.C.
        Human cytomegalovirus induces multiple means to combat reactive oxygen species.
        J. Virol. 2011; 85: 12585-12593https://doi.org/10.1128/JVI.05572-11
        • Buck C.B.
        • Day P.M.
        • Thompson C.D.
        • Lubkowski J.
        • Lu W.
        • Lowy D.R.
        • Schiller J.T.
        Human alpha-defensins block papillomavirus infection.
        Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 1516-1521https://doi.org/10.1073/PNAS.0508033103
        • Diebold S.S.
        • Kaisho T.
        • Hemmi H.
        • Akira S.
        • C. Reis E Sousa
        Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA.
        Science. 2004; 303: 1529-1531https://doi.org/10.1126/SCIENCE.1093616
        • Kim S.J.
        • Davis R.P.
        • Jenne C.N.
        Platelets as modulators of inflammation.
        Semin. Thromb. Hemost. 2018; 44: 91-101https://doi.org/10.1055/S-0037-1607432
        • Hottz E.D.
        • Lopes J.F.
        • Freitas C.
        • Valls-De-Souza R.
        • Oliveira M.F.
        • Bozza M.T.
        • Da Poian A.T.
        • Weyrich A.S.
        • Zimmerman G.A.
        • Bozza F.A.
        • Bozza P.T.
        Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation.
        Blood. 2013; 122: 3405-3414https://doi.org/10.1182/BLOOD-2013-05-504449
        • Hamad O.A.
        • Nilsson P.H.
        • Wouters D.
        • Lambris J.D.
        • Ekdahl K.N.
        • Nilsson B.
        Complement component C3 binds to activated normal platelets without preceding proteolytic activation and promotes binding to complement receptor 1.
        J. Immunol. 2010; 184: 2686-2692https://doi.org/10.4049/JIMMUNOL.0902810
        • Oshiumi H.
        • Kouwaki T.
        • Seya T.
        Accessory factors of cytoplasmic viral RNA sensors required for antiviral innate immune response.
        Front. Immunol. 2016; 7https://doi.org/10.3389/FIMMU.2016.00200
        • Clingan J.M.
        • Ostrow K.
        • Hosiawa K.A.
        • Chen Z.J.
        • Matloubian M.
        Differential roles for RIG-I-like receptors and nucleic acid-sensing TLR pathways in controlling a chronic viral infection.
        J. Immunol. 2012; 188: 4432-4440https://doi.org/10.4049/JIMMUNOL.1103656
        • Qin C.F.
        • Zhao H.
        • Liu Z.Y.
        • Jiang T.
        • Deng Y.Q.
        • Yu X.D.
        • Yu M.
        • De Qin E.
        Retinoic acid inducible gene-I and melanoma differentiation-associated gene 5 are induced but not essential for dengue virus induced type I interferon response.
        Mol. Biol. Rep. 2011; 38: 3867-3873https://doi.org/10.1007/S11033-010-0502-7
        • Campbell R.A.
        • Schwertz H.
        • Hottz E.D.
        • Rowley J.W.
        • Manne B.K.
        • Washington A.V.
        • Hunter-Mellado R.
        • Tolley N.D.
        • Christensen M.
        • Eustes A.S.
        • Montenont E.
        • Bhatlekar S.
        • Ventrone C.H.
        • Kirkpatrick B.D.
        • Pierce K.K.
        • Whitehead S.S.
        • Diehl S.A.
        • Bray P.F.
        • Zimmerman G.A.
        • Kosaka Y.
        • Bozza P.T.
        • Bozza F.A.
        • Weyrich A.S.
        • Rondina M.T.
        Human megakaryocytes possess intrinsic antiviral immunity through regulated induction of IFITM3.
        Blood. 2019; 133: 2013-2026https://doi.org/10.1182/BLOOD-2018-09-873984
        • Iannacone M.
        • Sitia G.
        • Isogawa M.
        • Whitmire J.K.
        • Marchese P.
        • Chisari F.V.
        • Ruggeri Z.M.
        • Guidotti L.G.
        Platelets prevent IFN-alpha/beta-induced lethal hemorrhage promoting CTL-dependent clearance of lymphocytic choriomeningitis virus.
        Proc. Natl. Acad. Sci. U. S. A. 2008; 105: 629-634https://doi.org/10.1073/PNAS.0711200105
        • Koupenova M.
        • Mick E.
        • Mikhalev E.
        • Benjamin E.J.
        • Tanriverdi K.
        • Freedman J.E.
        Sex differences in platelet toll-like receptors and their association with cardiovascular risk factors.
        Arterioscler. Thromb. Vasc. Biol. 2015; 35 (Epub 2015 Feb 5. PMID: 25657311; PMCID: PMC4376646): 1030-1037https://doi.org/10.1161/ATVBAHA.114.304954
        • Perales-Linares R.
        • Navas-Martin S.
        Toll-like receptor 3 in viral pathogenesis: friend or foe?.
        Immunology. 2013; 140: 153-167https://doi.org/10.1111/IMM.12143
        • Baccala R.
        • Welch M.J.
        • Gonzalez-Quintial R.
        • Walsh K.B.
        • Teijaro J.R.
        • Nguyen A.
        • Ng C.T.
        • Sullivan B.M.
        • Zarpellon A.
        • Ruggeri Z.M.
        • De La Torre J.C.
        • Theofilopoulos A.N.
        • Oldstone M.B.A.
        Type I interferon is a therapeutic target for virus-induced lethal vascular damage.
        Proc. Natl. Acad. Sci. U. S. A. 2014; 111: 8925-8930https://doi.org/10.1073/PNAS.1408148111
        • Spodick D.H.
        Infection and infarction. Acute viral (and other) infection in the onset, pathogenesis, and mimicry of acute myocardial infarction.
        Am. J. Med. 1986; 81: 661-668https://doi.org/10.1016/0002-9343(86)90554-1
        • Kwong J.C.
        • Schwartz K.L.
        • Campitelli M.A.
        • Chung H.
        • Crowcroft N.S.
        • Karnauchow T.
        • Katz K.
        • Ko D.T.
        • McGeer A.J.
        • McNally D.
        • Richardson D.C.
        • Rosella L.C.
        • Simor A.
        • Smieja M.
        • Zahariadis G.
        • Gubbay J.B.
        Acute myocardial infarction after laboratory-confirmed influenza infection.
        N. Engl. J. Med. 2018; 378: 345-353https://doi.org/10.1056/NEJMOA1702090
        • Naghavi M.
        • Barlas Z.
        • Siadaty S.
        • Naguib S.
        • Madjid M.
        • Casscells W.
        Association of influenza vaccination and reduced risk of recurrent myocardial infarction.
        Circulation. 2000; 102: 3039-3045https://doi.org/10.1161/01.CIR.102.25.3039
        • Boilard E.
        • Paré G.
        • Rousseau M.
        • Cloutier N.
        • Dubuc I.
        • Lévesque T.
        • Borgeat P.
        • Flamand L.
        Influenza virus H1N1 activates platelets through FcγRIIA signaling and thrombin generation.
        Blood. 2014; 123: 2854-2863https://doi.org/10.1182/blood-2013-07-515536
        • Kim S.J.
        • Carestia A.
        • McDonald B.
        • Zucoloto A.Z.
        • Grosjean H.
        • Davis R.P.
        • Turk M.
        • Naumenko V.
        • Antoniak S.
        • Mackman N.
        • Abdul-Cader M.S.
        • Abdul-Careem M.F.
        • Hollenberg M.D.
        • Jenne C.N.
        Platelet-mediated NET release amplifies coagulopathy and drives lung pathology during severe influenza infection.
        Front. Immunol. 2021; 12https://doi.org/10.3389/FIMMU.2021.772859
        • Tatsumi K.
        • Schmedes C.M.
        • Houston E.R.
        • Butler E.
        • Mackman N.
        • Antoniak S.
        Protease-activated receptor 4 protects mice from coxsackievirus B3 and H1N1 influenza a virus infection.
        Cell. Immunol. 2019; https://doi.org/10.1016/j.cellimm.2019.103949
        • Tang N.
        • Li D.
        • Wang X.
        • Sun Z.
        Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia.
        J. Thromb. Haemost. 2020; 18: 844-847https://doi.org/10.1111/JTH.14768
        • Giannis D.
        • Ziogas I.A.
        • Gianni P.
        Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past.
        J. Clin. Virol. 2020; 127https://doi.org/10.1016/J.JCV.2020.104362
        • McGonagle D.
        • O’Donnell J.S.
        • Sharif K.
        • Emery P.
        • Bridgewood C.
        Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia, lancet.
        Rheumatol. 2020; 2: e437-e445https://doi.org/10.1016/S2665-9913(20)30121-1
        • Llitjos J.F.
        • Leclerc M.
        • Chochois C.
        • Monsallier J.M.
        • Ramakers M.
        • Auvray M.
        • Merouani K.
        High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients.
        J. Thromb. Haemost. 2020; 18: 1743-1746https://doi.org/10.1111/JTH.14869
        • Pereyra D.
        • Heber S.
        • Schrottmaier W.C.
        • Santol J.
        • Pirabe A.
        • Schmuckenschlager A.
        • Kammerer K.
        • Ammon D.
        • Sorz T.
        • Fritsch F.
        • Hayden H.
        • Pawelka E.
        • Krüger P.
        • Rumpf B.
        • Traugott M.T.
        • Glaser P.
        • Firbas C.
        • Schörgenhofer C.
        • Seitz T.
        • Karolyi M.
        • Pabinger I.
        • Brostjan C.
        • Starlinger P.
        • Weiss G.
        • Bellmann-Weiler R.
        • Salzer H.J.F.
        • Jilma B.
        • Zoufaly A.
        • Assinger A.
        • Low-molecular-weight heparin use in coronavirus disease
        Is associated with curtailed viral persistence: a retrospective multicentre observational study.
        Cardiovasc. Res. 2019; 117: 2807-2820https://doi.org/10.1093/CVR/CVAB308
        • Schulman S.
        • Sholzberg M.
        • Spyropoulos A.C.
        • Zarychanski R.
        • Resnick H.E.
        • Bradbury C.A.
        • Broxmeyer L.
        • Connors J.M.
        • Falanga A.
        • Iba T.
        • Kaatz S.
        • Levy J.H.
        • Middeldorp S.
        • Minichiello T.
        • Ramacciotti E.
        • Samama C.M.
        • Thachil J.
        ISTH guidelines for antithrombotic treatment in COVID-19.
        J. Thromb. Haemost. 2022; 20https://doi.org/10.1111/JTH.15808
        • Connors J.M.
        • Brooks M.M.
        • Sciurba F.C.
        • Krishnan J.A.
        • Bledsoe J.R.
        • Kindzelski A.
        • Baucom A.L.
        • Kirwan B.A.
        • Eng H.
        • Martin D.
        • Zaharris E.
        • Everett B.
        • Castro L.
        • Shapiro N.L.
        • Lin J.Y.
        • Hou P.C.
        • Pepine C.J.
        • Handberg E.
        • Haight D.O.
        • Wilson J.W.
        • Majercik S.
        • Fu Z.
        • Zhong Y.
        • Venugopal V.
        • Beach S.
        • Wisniewski S.
        • Ridker P.M.
        Effect of antithrombotic therapy on clinical outcomes in outpatients with clinically stable symptomatic COVID-19: the ACTIV-4B randomized clinical trial.
        JAMA. 2021; 326: 1703-1712https://doi.org/10.1001/JAMA.2021.17272
        • Flam B.
        • Wintzell V.
        • Ludvigsson J.F.
        • Mårtensson J.
        • Pasternak B.
        Direct oral anticoagulant use and risk of severe COVID-19.
        J. Intern. Med. 2021; 289: 411-419https://doi.org/10.1111/JOIM.13205
        • Rivera-Caravaca J.M.
        • Buckley B.J.R.
        • Harrison S.L.
        • Fazio-Eynullayeva E.
        • Underhill P.
        • Marín F.
        • Lip G.Y.H.
        Direct-acting oral anticoagulants use prior to COVID-19 diagnosis and associations with 30-day clinical outcomes.
        Thromb. Res. 2021; 205: 1-7https://doi.org/10.1016/J.THROMRES.2021.06.014
        • Battistoni I.
        • Francioni M.
        • Morici N.
        • Rubboli A.
        • Podda G.M.
        • Pappalardo A.
        • Abdelrahim M.E.A.
        • Elgendy M.O.
        • Elgendy S.O.
        • Khalaf A.M.
        • Hamied A.A.M.
        • Garcés H.H.
        • Abdelhamid O.E.S.
        • Tawfik K.A.M.
        • Zeduri A.
        • Bassi G.
        • Pongetti G.
        • Angelini L.
        • Giovinazzo S.
        • Garcia P.M.
        • Serino F.S.
        • Polistina G.E.
        • Fiorentino G.
        • Barbati G.
        • Toniolo A.
        • Fabbrizioli A.
        • Belenguer-Muncharaz A.
        • Porto I.
        • Ocak S.
        • Minuz P.
        • Bernal F.
        • Hermosilla I.
        • Borovac J.A.
        • Pre- and in-hospital anticoagulation therapy in coronavirus disease
        Patients: a propensity-matched analysis of in-hospital outcomes.
        J. Cardiovasc. Med. (Hagerstown). 2019; 23: 264-271https://doi.org/10.2459/JCM.0000000000001284
        • Castelnuovo A.Di
        • Costanzo S.
        • Antinori A.
        • Berselli N.
        • Blandi L.
        • Bonaccio M.
        • Cauda R.
        • Guaraldi G.
        • Menicanti L.
        • Mennuni M.
        • Parruti G.
        • Patti G.
        • Santilli F.
        • Signorelli C.
        • Vergori A.
        • Abete P.
        • Ageno W.
        • Agodi A.
        • Agostoni P.
        • Aiello L.
        • Moghazi S.Al
        • Arboretti R.
        • Astuto M.
        • Aucella F.
        • Barbieri G.
        • Bartoloni A.
        • Bonfanti P.
        • Cacciatore F.
        • Caiano L.
        • Carrozzi L.
        • Cascio A.
        • Ciccullo A.
        • Cingolani A.
        • Cipollone F.
        • Colomba C.
        • Colombo C.
        • Crosta F.
        • Danzi G.B.
        • D’Ardes D.
        • Donati K.De Gaetano
        • Gennaro F.Di
        • Tano G.Di
        • D’Offizi G.
        • Fantoni M.
        • Fusco F.M.
        • Gentile I.
        • Gianfagna F.
        • Grandone E.
        • Graziani E.
        • Grisafi L.
        • Guarnieri G.
        • Larizza G.
        • Leone A.
        • MacCagni G.
        • Madaro F.
        • Maitan S.
        • Mancarella S.
        • Mapelli M.
        • Maragna R.
        • Marcucci R.
        • Maresca G.
        • Marongiu S.
        • Marotta C.
        • Marra L.
        • Mastroianni F.
        • Mazzitelli M.
        • Mengozzi A.
        • Menichetti F.
        • Meschiari M.
        • Milic J.
        • Minutolo F.
        • Molena B.
        • Montineri A.
        • Mussini C.
        • Musso M.
        • Niola D.
        • Odone A.
        • Olivieri M.
        • Palimodde A.
        • Parisi R.
        • Pasi E.
        • Pesavento R.
        • Petri F.
        • Pinchera B.
        • Poletti V.
        • Ravaglia C.
        • Rognoni A.
        • Rossato M.
        • Rossi M.
        • Sangiovanni V.
        • Sanrocco C.
        • Scorzolini L.
        • Sgariglia R.
        • Simeone P.G.
        • Taddei E.
        • Torti C.
        • Vettor R.
        • Vianello A.
        • Vinceti M.
        • Virano A.
        • Vocciante L.
        • Caterina R.De
        • Iacoviello L.
        Heparin in COVID-19 Patients Is Associated with Reduced In-Hospital Mortality: The Multicenter Italian CORIST Study.
        Thromb. Haemost. 2021; 121: 1054-1065https://doi.org/10.1055/A-1347-6070
        • Sholzberg M.
        • Tang G.H.
        • Rahhal H.
        • Alhamzah M.
        • Kreuziger L.B.
        • Áinle F.N.
        • Alomran F.
        • Alayed K.
        • Alsheef M.
        • Alsumait F.
        • Pompilio C.E.
        • Sperlich C.
        • Tangri S.
        • Tang T.
        • Jaksa P.
        • Suryanarayan D.
        • Almarshoodi M.
        • Castellucci L.A.
        • James P.D.
        • Lillicrap D.
        • Carrier M.
        • Beckett A.
        • Colovos C.
        • Jayakar J.
        • Arsenault M.P.
        • Wu C.
        • Doyon K.
        • Andreou E.R.
        • Dounaevskaia V.
        • Tseng E.K.
        • Lim G.
        • Fralick M.
        • Middeldorp S.
        • Lee A.Y.Y.
        • Zuo F.
        • Da Costa B.R.
        • Thorpe K.E.
        • Negri E.M.
        • Cushman M.
        • Jüni P.
        Effectiveness of therapeutic heparin versus prophylactic heparin on death, mechanical ventilation, or intensive care unit admission in moderately ill patients with covid-19 admitted to hospital: RAPID randomised clinical trial.
        BMJ. 2021; 375https://doi.org/10.1136/BMJ.N2400
        • Bikdeli B.
        • Talasaz A.H.
        • Rashidi F.
        • Bakhshandeh H.
        • Rafiee F.
        • Rezaeifar P.
        • Baghizadeh E.
        • Matin S.
        • Jamalkhani S.
        • Tahamtan O.
        • Sharif-Kashani B.
        • Beigmohammadi M.T.
        • Farrokhpour M.
        • Sezavar S.H.
        • Payandemehr P.
        • Dabbagh A.
        • Moghadam K.G.
        • Khalili H.
        • Yadollahzadeh M.
        • Riahi T.
        • Abedini A.
        • Lookzadeh S.
        • Rahmani H.
        • Zoghi E.
        • Mohammadi K.
        • Sadeghipour P.
        • Abri H.
        • Tabrizi S.
        • Mousavian S.M.
        • Shahmirzaei S.
        • Amin A.
        • Mohebbi B.
        • Parhizgar S.E.
        • Aliannejad R.
        • Eslami V.
        • Kashefizadeh A.
        • Dobesh P.P.
        • Kakavand H.
        • Hosseini S.H.
        • Shafaghi S.
        • Ghazi S.F.
        • Najafi A.
        • Jimenez D.
        • Gupta A.
        • Madhavan M.V.
        • Sethi S.S.
        • Parikh S.A.
        • Monreal M.
        • Hadavand N.
        • Hajighasemi A.
        • Maleki M.
        • Sadeghian S.
        • Piazza G.
        • Kirtane A.J.
        • Van Tassell B.W.
        • Stone G.W.
        • Lip G.Y.H.
        • Krumholz H.M.
        • Goldhaber S.Z.
        • Sadeghipour P.
        Intermediate-dose versus standard-dose prophylactic anticoagulation in patients with COVID-19 admitted to the intensive care unit: 90-day results from the INSPIRATION randomized trial.
        Thromb. Haemost. 2022; 122: 131-141https://doi.org/10.1055/A-1485-2372
        • PR L.
        • EC G.
        • JS B.
        • MD N.
        • BJ M.
        • JC N.
        • MN G.
        • RS R.
        • HR R.
        • AF T.
        • DT H.
        • CA B.
        • BL H.
        • LZ K.
        • SR K.
        • AS S.
        • KS K.
        • AC G.
        • BA K.
        • MM B.
        • AM H.
        • RJ L.
        • SM B.
        • LR B.
        • AW A.
        • YM A.
        • HH B.
        • LA C.
        • JT C.
        • AC C.
        • TW C.
        • LPG D.
        • MA D.
        • MB E.
        • LJ E.
        • BM E.
        • DA F.
        • RA F.
        • JP G.
        • BT G.
        • TD G.
        • LC G.
        • AL G.
        • YY G.
        • PL G.
        • NM H.
        • SM H.
        • CM H.
        • RD H.
        • AA H.
        • AA H.
        • JM H.
        • CM H.
        • BJ H.
        • RC H.
        • VN I.
        • JR J.
        • NM K.
        • AL K.
        • AJ K.
        • MM K.
        • AE K.
        • ME K.
        • MA L.
        • CM L.
        • ES L.
        • FG L.
        • JL L.-S.M.
        • SA L.
        • JC M.
        • MA M.
        • DF M.
        • EG M.
        • SP M.
        • SK M.
        • SC M.
        • PR M.
        • GB N.
        • AD N.
        • PK P.
        • RL P.
        • JC P.
        • JD P.
        • YS P.G.
        • ME P.
        • JG Q.
        • NS R.
        • FO S.
        • CT S.
        • REG S.
        • CW S.
        • DM S.
        • DG S.
        • JP S.
        • AB S.
        • SJ S.
        • AM T.
        • BJ W.
        • RJ W.
        • JG W.
        • FG Z.
        • DC A.
        • CJ M.
        • SA W.
        • ME F.
        • JS H.
        Therapeutic Anticoagulation with Heparin in Noncritically Ill Patients with Covid-19.
        N. Engl. J. Med. 2021; 385: 790-802https://doi.org/10.1056/NEJMOA2105911
        • Spyropoulos A.C.
        • Goldin M.
        • Giannis D.
        • Diab W.
        • Wang J.
        • Khanijo S.
        • Mignatti A.
        • Gianos E.
        • Cohen M.
        • Sharifova G.
        • Lund J.M.
        • Tafur A.
        • Lewis P.A.
        • Cohoon K.P.
        • Rahman H.
        • Sison C.P.
        • Lesser M.L.
        • Ochani K.
        • Agrawal N.
        • Hsia J.
        • Anderson V.E.
        • Bonaca M.
        • Halperin J.L.
        • Weitz J.I.
        Efficacy and safety of therapeutic-dose heparin vs standard prophylactic or intermediate-dose heparins for thromboprophylaxis in high-risk hospitalized patients with COVID-19: the HEP-COVID randomized clinical trial.
        JAMA Intern. Med. 2021; 181: 1612-1620https://doi.org/10.1001/JAMAINTERNMED.2021.6203
        • Zhang S.
        • Liu Y.
        • Wang X.
        • Yang L.
        • Li H.
        • Wang Y.
        • Liu M.
        • Zhao X.
        • Xie Y.
        • Yang Y.
        • Zhang S.
        • Fan Z.
        • Dong J.
        • Yuan Z.
        • Ding Z.
        • Zhang Y.
        • Hu L.
        SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19.
        J. Hematol. Oncol. 2020; 13https://doi.org/10.1186/S13045-020-00954-7
        • Cox D.
        Targeting SARS-CoV-2-platelet interactions in COVID-19 and vaccine-related thrombosis.
        Front. Pharmacol. 2021; 12https://doi.org/10.3389/FPHAR.2021.708665
        • Perico L.
        • Morigi M.
        • Galbusera M.
        • Pezzotta A.
        • Gastoldi S.
        • Imberti B.
        • Perna A.
        • Ruggenenti P.
        • Donadelli R.
        • Benigni A.
        • Remuzzi G.
        SARS-CoV-2 spike protein 1 activates microvascular endothelial cells and complement system leading to platelet aggregation.
        Front. Immunol. 2022; 13https://doi.org/10.3389/FIMMU.2022.827146
        • Amison R.T.
        • O’Shaughnessy B.G.
        • Arnold S.
        • Cleary S.J.
        • Nandi M.
        • Pitchford S.C.
        • Bragonzi A.
        • Page C.P.
        Platelet depletion impairs host defense to pulmonary infection with Pseudomonas aeruginosa in mice.
        Am. J. Respir. Cell Mol. Biol. 2018; 58: 331-340https://doi.org/10.1165/RCMB.2017-0083OC
        • Welsh J.D.
        • Muthard R.W.
        • Stalker T.J.
        • Taliaferro J.P.
        • Diamond S.L.
        • Brass L.F.
        A systems approach to hemostasis: 4.
        How hemostatic thrombi limit the loss of plasma-borne molecules from the microvasculature, Blood. 2016; 127: 1598-1605https://doi.org/10.1182/BLOOD-2015-09-672188