Advertisement
Full Length Article| Volume 206, P42-51, October 2021

Download started.

Ok

Preferential interaction of platelets with prostate cancer cells with stem cell markers

  • Author Footnotes
    1 These authors contributed equally to the work.
    Jan K. Rudzinski
    Footnotes
    1 These authors contributed equally to the work.
    Affiliations
    Division of Urology, Department of Surgery, University of Alberta, Canada
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to the work.
    Natasha P. Govindasamy
    Footnotes
    1 These authors contributed equally to the work.
    Affiliations
    Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Canada
    Search for articles by this author
  • Amir Asgari
    Affiliations
    Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada
    Search for articles by this author
  • Max S. Saito
    Affiliations
    Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada
    Search for articles by this author
  • John D. Lewis
    Affiliations
    Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Canada
    Search for articles by this author
  • Paul Jurasz
    Correspondence
    Corresponding author at: Faculty of Pharmacy and Pharmaceutical Sciences, 3-142E Katz Group-Rexall Centre, 11361–87 Avenue, Edmonton, AB T6G-2E1, Canada.
    Affiliations
    Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada

    Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Canada

    Cardiovascular Research Centre, University of Alberta, Canada

    Mazankowski Alberta Heart Institute, University of Alberta, Canada
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to the work.

      Highlights

      • Little is known about the interaction between PCSC and platelets.
      • Study assess PCSC induced TCIPA and the role of SDF-1α:CXCR4 in platelet-induced PCSC invasion.
      • PCSCs induce TCIPA through thrombin generation and their invasion is facilitated in part by platelet-derived SDF-1α.

      Abstract

      Background

      Prostate cancer (PCa) may be initiated by CD133+/CD44+ expressing stem cell-like cells (PCSC), which are also thought to drive metastasis. Platelets also contribute to metastasis via tumor cell-induced platelet aggregation (TCIPA), which in part enhances cancer cell invasion. Moreover, activated platelets secrete stromal derived growth factor-1α (SDF-1α) that can mobilize CSCs via the CXCR4 receptor. However, the potential reciprocal interactions between CSCs and platelets have not been investigated.

      Objective

      To characterize the mechanisms behind PCSC-platelet interaction.

      Methods

      Fluorescence Activated Cell Sorting was utilized to separate DU145 and PC3 PCa cells into CD133+/CD44+, CD133+/CD44-, CD44+/CD133-, and CD133-/CD44- subpopulations and to measure their CXCR4 surface expression. PCa subpopulation TCIPA experiments were performed using aggregometry and immunoblot was used to measure prothrombin. Platelet SDF-1α secretion was measured by ELISA. Modified-Boyden chamber assays were used to assess the role of SDF-1α:CXCR4 pathway in platelet-PCSC interactions.

      Results

      DU145 and PC3 expressing both CD133 and CD44 stem cell markers accounted for only small fractions of total cells (DU145: CD133+/CD44+ 3.44 ± 1.45% vs. CD133+/CD44- 1.56 ± 0.45% vs. CD44+/CD133- 68.19 ± 6.25% vs. CD133-/CD44- 20.36 ± 4.51%). However, CD133+ subpopulations induced the greatest amount of aggregation compared to CD44+/CD133- and double-negative DU145, and this aggregation potency of CD133+ PCa cells corresponded with high levels of prothrombin expression. Additionally, CD133+ subpopulations expressed significantly higher level of CXCR4 compared to CD133-/CD44- and CD44+/CD133-. Disruption of SDF-1α:CXCR4 pathway reduced platelet-induced PCSC invasion.

      Conclusions

      CD133+/CD44+ and CD133+/CD44- PCSCs have highest platelet aggregation potency, which could be attributed to their increased prothrombin expression. Reciprocally, platelet-derived SDF-1α stimulates PCSC invasion.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Thrombosis Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Shen M.
        • Abate-Shen C.
        Molecular genetics of prostate cancer: new prospects for old challengers.
        Genes Dev. 2010; 24: 1967-2000
        • Chen X.
        • Rucaj K.
        • Liu X.
        • Tang D.G.
        New insights into prostate cancer stem cells.
        Cell Cycle. 2013; 12: 579-589
        • Visvader J.E.
        • Lindeman G.J.
        Cancer stem cells: current status and evolving complexities.
        Cell Stem Cell. 2012; 10: 717-728
        • Lapidot T.
        • Sirard C.
        • Vormoor J.
        • Murdoch B.
        • Hoang T.
        • Caceres-Cortes J.
        • Minden M.
        • Paterson B.
        • Caligiuri M.A.
        • Dick J.E.
        A cell initiating human acute myeloid leukaemia after transplantation into SCID mice.
        Nature. 1994; 367: 645-648
        • Bonnet D.D.J.
        Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell.
        Nat. Med. 1997; 3: 730-737
        • Kreso A.
        • Dick J.E.
        Evolution of the cancer stem cell model.
        Cell Stem Cell. 2014; 14: 275-291
        • Pattabiraman D.R.
        • Weinberg R.A.
        Tackling the cancer stem cells: what challenges do they pose?.
        Nat. Rev. Drug Discov. 2014; 13: 497-512
        • Richardson G.D.
        • Robson C.N.
        • Lang S.H.
        • Neal D.E.
        • Maitland N.J.
        • Collins A.T.
        CD133, a novel marker for human prostatic epithelial stem cells.
        J. Cell Sci. 2004; 117: 3539-3545
        • Wu C.
        • Alman B.A.
        Side population cells in human cancers.
        Cancer Lett. 2008; 268: 1-9
        • Ho-Tin-Noà B.
        • Goerge T.
        • Cifuni S.M.
        • Duerschmied D.
        • Wagner D.D.
        Platelet granule secretion continuously prevents intratumor hemorrhage.
        Cancer Res. 2008; 68: 6851-6858
        • Kisucka J.
        • Butterfield C.E.
        • Duda D.G.
        • Eichenberger S.C.
        • Saffaripour S.
        • Ware J.
        • Ruggeri Z.M.
        • Rk Jain
        • Folkman J.
        • Wagner D.D.
        Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage.
        PNAS. 2006; 103: 855-860
        • Jurasz P.
        • Alonso-Escolano D.
        • Radomski M.W.
        Platelet-cancer interactions: mechanisms and pharmacology of tumour cell-induced platelet aggregation.
        Br. J. Pharmacol. 2004; 143: 819-826
        • Rudzinski J.K.
        • Govindasamy N.P.
        • Lewis J.D.
        • Jurasz P.
        The role of the androgen receptor in prostate cancer-induced platelet aggregation and platelet-induced invasion.
        J. Thromb. Haemost. 2020; 18: 2976-2986
        • Stellos K.
        • Gawaz M.
        Platelets and stromal cell derived factor-1 in progenitor cell recruitment.
        Semin. Thromb. Hemost. 2007; 33: 159-164
        • Heissig B.
        • Hattori K.
        • Dias S.
        • Friedrich M.
        • Ferris B.
        • Hackett N.R.
        • Crystal R.G.
        • Besmer P.
        • Lyden D.
        • Moore M.A.
        • Werb Z.
        • Rafii S.
        Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand.
        Cell. 2002; 109: 625-637
        • Jin D.K.
        • Shido K.
        • Kopp H.G.
        • Petit I.
        • Shmelkov S.V.
        • Young L.M.
        • Hooper A.T.
        • Amano H.
        • Avecilla S.T.
        • Heissig B.
        • Hattori K.
        • Zhang F.
        • Hicklin D.J.
        • Wu Y.
        • Zhu Z.
        • Dunn A.
        • Salari H.
        • Werb Z.
        • Hackett N.R.
        • Crystal R.G.
        • et al.
        Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4 hemangiocytes.
        Nat. Med. 2006; 12: 557-567
        • Dubrovska A.
        • Elliott J.
        • Salamone R.J.
        • Telegeev G.D.
        • Stakhovsky A.E.
        • Schepotin I.B.
        • Yan F.
        • Wang Y.
        • Bouchez L.C.
        • Kularatne S.A.
        • Watson J.
        • Trussell C.
        • Reddy V.A.
        • Cho C.Y.
        • Schultz P.G.
        CXCR4 expression in prostate cancer progenitor cells.
        PLOS One. 2012; 7e31226
        • Radomski M.
        • Moncada S.
        An improved method for washing platelets with prostacyclin.
        Thromb. Res. 1983; 30: 383-389
        • Radziwon-Balicka A.
        • Ramer C.
        • Moncada de la Rosa C.
        • Zielnik-Drabik B.
        • Jurasz P.
        Angiostatin inhibits endothelial MMP-2 and MMP-14 expression: a hypoxia specific mechanism of action.
        Vasc. Pharmacol. 2013; 58: 280-291
        • Massberg S.
        • Konrad I.
        • Schurzinger K.
        • Lorenz M.
        • Schneider S.
        • Zohlnhoefer D.
        • Hoppe K.
        • Schiemann M.
        • Kennerknecht E.
        • Sauer S.
        • Schulz C.
        • Kerstan S.
        • Rudelius M.
        • Seidl S.
        • Sorge F.
        • Langer H.
        • Peluso M.
        • Goyal P.
        • Vestweber D.
        • Emambokus N.R.
        • et al.
        Platelets secrete stromal cell-derived factor 1 alpha and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo.
        J. Exp. Med. 2006; 203: 1221-1233
        • Kalatskaya I.
        • Berchiche Y.
        • Gravel S.
        • Limberg B.
        • Rosenbaum J.S.
        • Heveker N.
        AMD3100 is a CXCR7 ligand with allosteric agonist properties.
        Mol. Pharmacol. 2009; 75: 1240-1247
        • Siddiqui Y.H.
        • Kershaw R.M.
        • Humphreys E.H.
        • Assis Junior E.M.
        • Chaudhri S.
        • Jayaraman P.-S.
        • Gaston K.
        CK2 abrogates the inhibitory effects of PRH/HHEX on prostate cancer cell migration and invasion and acts through PRH to control cell proliferation.
        Oncogenesis. 2017; 6e293
        • Marcolino E.
        • Siddiqui Y.H.
        • van den Bosch M.
        • Poole A.W.
        • Jayaraman P.-S.
        • Gaston K.
        Blood platelets stimulate cancer cell extravasation through TGFß-mediated downregulation of PRH/HHEX.
        Oncogenesis. 2020; 9: 10
        • Cherciu I.
        • Barbalan A.
        • Pirici D.
        • Margaritescu C.
        • Saftoiu A.
        Stem cells, colorectal cancer and cancer stem cell markers correlations.
        Curr. Health Sci. J. 2014; 40: 153-161
        • Vander Griend D.J.
        • Karthaus W.L.
        • Darymple S.
        • Meeker A.
        • DeMarzo A.M.
        The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells.
        Cancer Res. 2008; 68: 9703-9711
        • Maitland N.J.
        • Collins A.T.
        Prostate cancer stem cells: a new target for therapy.
        J. Clin. Oncol. 2008; 26: 2862-2870
        • Patrawala L.
        • Calhoun T.
        • Schneider-Broussard R.
        • Li H.
        • Bhatia B.
        Highly purified CD44 prostate cancer cells from xenograft human tumors enriched in tumorigenic and metastatic progenitor cells.
        Oncogene. 2006; 25: 1696-1708
        • Neal D.E.
        • Maitland N.J.
        • Collins A.T.
        CD133, a novel marker for human prostatic epithelial stem cells.
        J. Cell Sci. 2005; 117: 3539-3545
        • Dubrovska A.
        • Kim S.
        • Salamone R.J.
        • Walker J.R.
        • Maira S.M.
        • Garcia-Echeverria C.
        • Schultz P.G.
        • Reddy V.A.
        The role of PTEN/AKT/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell population.
        Proc. Natl. Acad. Sci. U. S. A. 2009; 106: 268-273
        • Tang D.G.
        • Patrawala L.
        • Calhoun T.
        • Bhatia B.
        • Choy G.
        • Schneider-Broussard R.
        • Jeter C.
        Prostate cancer stem/progenitor cells: identification, characterization, and implications.
        Mol. Carcinog. 2007; 46: 1-14
        • Stone K.
        • Mickey D.
        • Wunderli H.
        • Mickey G.
        • Paulson D.
        Isolation of a human prostate carcinoma cell line (DU145).
        Int. J. Cancer. 1978; 21: 274-281
        • Pellacani D.
        • Oldridge E.E.
        • Collins A.T.
        • Maitland N.J.
        Prominin-1 (CD133) expression in the prostate and prostate cancer: a marker for quiescent stem cells.
        Adv. Exp. Med. Biol. 2013; 777: 167-184
        • Isaacs J.T.
        Resolving the Coffey Paradox: what does the androgen receptor do in normal vs. malignant prostate epithelial cells?.
        Am. J. Clin. Exp. Urol. 2018; 6: 55-61
        • Chen C.
        • Zhao S.
        • Karnad A.
        • Freeman J.W.
        The biology and role of CD44 in cancer progression: therapeutic implications.
        J. Hematol. Oncol. 2018; 11: 64
        • Alves C.S.
        • Burdick M.M.
        • Thomas S.N.
        • Pawar P.
        • Konstantopoulos K.
        The dual role of CD44 as a functional P-selectin ligand and fibrin receptor in colon carcinoma cell adhesion.
        Am. J. Physiol. Cell Physiol. 2008; 294: C907-C916
        • Thomas S.N.
        • Zhu F.
        • Schnaar R.L.
        • Alves C.S.
        • Konstantopoulos K.
        Carcinoembryonic antigen and CD44 variant isoforms cooperate to mediate colon carcinoma cell adhesion to E- and L-selectin in shear flow.
        J. Biol. Chem. 2008; 283: 15647-15655
        • Alves C.S.
        • Konstantopoulos K.
        PDGF suppresses the sulfation of CD44v and potentiates CD44v-mediated binding of colon carcinoma cells to fibrin under flow.
        PLoS One. 2012; 7e41472
        • Chatterjee M.
        • Gawaz M.
        Platelet-derived CXCL12 (SDF-1a): basic mechanisms and clinical implications.
        J. Thromb. Haemost. 2013; 11: 1954-1967
        • Janowska-Wieczorek A.
        • Marquez L.A.
        • Dobrowsky A.
        • Ratajczak M.Z.
        • Cabuhat M.L.
        Differential MMP and TIMP production by human marrow and peripheral blood CD34(+) cells in response to chemokines.
        Exp. Hematol. 2000; 28: 1274-1285
        • Radziwon-Balicka A.
        • Zielnik B.
        • Doroszko A.
        • Jurasz P.
        • Moncada de la Rosa C.
        Temporal and pharmacological characterization of angiostatin release and generation by human platelets: implications for endothelial cell migration.
        PLoS One. 2013; 8e59281
        • Taichman R.S.
        • Cooper C.
        • Keller E.T.
        • Pienta K.J.
        • Taichman N.S.
        • McCauley L.K.
        Use of the stromal cell-derived factor1/CXCR4 pathway in prostate cancer metastasis to bone.
        Cancer Res. 2002; 62: 1832-1837