Short-term exposure to PM2.5 and risk of venous thromboembolism: A case-crossover study

      Highlights

      • Controversial findings are reported about air pollution and VTE.
      • Positive associations were found for pulmonary embolisms in warm season.
      • No evidence emerged for deep vein thrombosis (DVT).

      Abstract

      Background

      Short-term exposure to air pollution increases the risk of cardiovascular mortality and morbidity but little evidence is available on pollution effects on venous thromboembolism (VTE), a common vascular disease.

      Methods

      We conducted a case-crossover analysis of all urgent hospitalizations for deep vein thrombosis (DVT) or pulmonary embolism (PE) among patients >35 years during the period 2006 to 2017 in Rome (Italy). We examined whether 1) short-term exposure to particulate matter with aerodynamic diameter <2.5 μg (PM2.5) increases the risk of hospitalization for DVT or PE, and 2) if the associations are modified by the period of the year (warm and cold seasons), sex, age and comorbidity.

      Results

      We found that short-term exposure to PM2.5 was associated with an increase of PE hospitalization risk of during the warm season (April to September) of 19.6% (95% confidence intervals: 8.3, 31%) per 10 μg/m3, while no statistically significant effects were displayed during the cold season or the whole year or for DVT hospitalizations. The effect of PM2.5 remained significant (%change: 21.3; 95%CI: 5.4, 39.5) after adjustment for nitrogen dioxide (NO2) co-exposure (a marker of traffic sources) and when limiting to primary diagnosis of PE (%change: 19.1; 95%CI: 4.2, 36.1). Age, sex and comorbid conditions did not modify the association.

      Conclusions

      Our results suggested a positive association between short-term exposure to PM2.5 and pulmonary embolism during the warm period of the year while no evidence emerged for deep vein thrombosis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Thrombosis Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Di Nisio M.
        • Carrier M.
        Incidental venous thromboembolism: is anticoagulation indicated?.
        Hematology. 2017; 2017: 121-127https://doi.org/10.1182/asheducation-2017.1.121
        • Rathbun S.
        The Surgeon General's Call to Action to Prevent Deep Vein Thrombosis and Pulmonary Embolism.
        2009https://doi.org/10.1161/CIRCULATIONAHA.108.841403
        • Huisman M.V.
        • Barco S.
        • Cannegieter S.C.
        • Le Gal G.
        • Konstantinides S.V.
        • Reitsma P.H.
        • Rodger M.
        • Noordegraaf A.V.
        • Klok F.A.
        Pulmonary embolism.
        Nat. Rev. Dis. Prim. 2018; 4: 18028https://doi.org/10.1038/nrdp.2018.28
        • Heit J.A.
        • Silverstein M.D.
        • Mohr D.N.
        • Petterson T.M.
        • O’Fallon W.M.
        • Melton L.J.
        Risk factors for deep vein thrombosis and pulmonary embolism.
        Arch. Intern. Med. 2000; 160: 809https://doi.org/10.1001/archinte.160.6.809
        • Di Nisio M.
        • van Es N.
        • Büller H.R.
        Deep vein thrombosis and pulmonary embolism.
        Lancet. 2016; 388: 3060-3073https://doi.org/10.1016/S0140-6736(16)30514-1
        • Zöller B.
        Time trends in pulmonary embolism: a matter of age and gender.
        Thromb. Res. 2013; 132: 6-7https://doi.org/10.1016/j.thromres.2013.05.031
        • Gregson J.
        • Kaptoge S.
        • Bolton T.
        • Pennells L.
        • Willeit P.
        • Burgess S.
        • Bell S.
        • Sweeting M.
        • Rimm E.B.
        • Kabrhel C.
        • Zöller B.
        • Assmann G.
        • Gudnason V.
        • Folsom A.R.
        • Arndt V.
        • Fletcher A.
        • Norman P.E.
        • Nordestgaard B.G.
        • Kitamura A.
        • Mahmoodi B.K.
        • Whincup P.H.
        • Knuiman M.
        • Salomaa V.
        • Meisinger C.
        • Koenig W.
        • Kavousi M.
        • Völzke H.
        • Cooper J.A.
        • Ninomiya T.
        • Casiglia E.
        • Rodriguez B.
        • Ben-shlomo Y.
        • Després J.
        • Simons L.
        • Barrett-connor E.
        • Björkelund C.
        • Notdurfter M.
        • Kromhout D.
        • Price J.
        • Sutherland S.E.
        • Sundström J.
        • Kauhanen J.
        • Gallacher J.
        • Beulens J.W.J.
        • Dankner R.
        • Cooper C.
        • Giampaoli S.
        • Deen J.F.
        • Gómez A.
        • Cámara D.
        • Kuller L.H.
        • Rosengren A.
        • Svensson P.J.
        • Nagel D.
        • Crespo C.J.
        • Brenner H.
        • Albertorio-diaz J.R.
        • Atkins R.
        • Brunner E.J.
        • Shipley M.
        • Njølstad I.
        • Lawlor D.A.
        • Van Der Schouw Y.T.
        • Selmer R.M.
        • Trevisan M.
        • Verschuren W.M.M.
        • Wassertheil-smoller S.
        • Lowe G.D.O.
        • Wood A.M.
        • Butterworth A.S.
        • Thompson S.G.
        • Danesh J.
        • Di Angelantonio E.
        • Meade T.
        • E. Risk, F. Collaboration
        Cardiovascular Risk Factors Associated With Venous Thromboembolism.
        1–11. 2019https://doi.org/10.1001/jamacardio.2018.4537
        • Dentali F.
        • Ageno W.
        • Becattini C.
        • Galli L.
        • Gianni M.
        • Riva N.
        • Imberti D.
        • Squizzato A.
        • Venco A.
        • Agnelli G.
        Prevalence and clinical history of incidental, asymptomatic pulmonary embolism: a meta-analysis.
        Thromb. Res. 2010; 125: 518-522https://doi.org/10.1016/j.thromres.2010.03.016
        • Stein P.D.
        • Kayali F.
        • Olson R.E.
        Analysis of occurrence of venous thromboembolic disease in the four seasons.
        Am. J. Cardiol. 2004; 93: 511-513https://doi.org/10.1016/j.amjcard.2003.10.061
        • White R.H.
        The Epidemiology of Venous Thromboembolism.
        2003: 4-8https://doi.org/10.1161/01.CIR.0000078468.11849.66
        • Zöller B.
        • Li X.
        • Sundquist J.
        • Sundquist K.
        Risk of pulmonary embolism in patients with autoimmune disorders: a nationwide follow-up study from Sweden.
        Lancet. 2012; 379: 244-249https://doi.org/10.1016/S0140-6736(11)61306-8
        • Dominici F.
        • Peng R.D.
        • Bell M.L.
        • Pham L.
        • McDermott A.
        • Zeger S.L.
        • Samet J.M.
        Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases.
        J. Am. Med. Assoc. 2006; 295: 1127-1134https://doi.org/10.1001/jama.295.10.1127
        • Raaschou-Nielsen O.
        • Andersen Z.J.
        • Jensen S.S.
        • Ketzel M.
        • Sørensen M.
        • Hansen J.
        • Loft S.
        • Tjønneland A.
        • Overvad K.
        Traffic air pollution and mortality from cardiovascular disease and all causes: a Danish cohort study.
        Environ. Health. 2012; 11: 60https://doi.org/10.1186/1476-069X-11-60
        • Samoli E.
        • Atkinson R.W.
        • Analitis A.
        • Fuller G.W.
        • Green D.C.
        • Mudway I.
        • Anderson H.R.
        • Kelly F.J.
        Associations of Short-term Exposure to Traffic-related Air Pollution With Cardiovascular and Respiratory Hospital Admissions in London, Uk.
        2016: 300-307https://doi.org/10.1136/oemed-2015-103136
        • Brook R.D.
        Cardiovascular effects of air pollution.
        Clin. Sci. (Lond.). 2008; 115: 175-187https://doi.org/10.1042/CS20070444
        • Scheers H.
        • Jacobs L.
        • Casas L.
        • Nemery B.
        • Nawrot T.S.
        Long-term exposure to particulate matter air pollution is a risk factor for stroke.
        Stroke. 2015; 46
        • Von Klot S.
        • Peters A.
        • Aalto P.
        • Bellander T.
        • Berglind N.
        • Ippoliti D.D.
        • Elosua R.
        • Hörmann A.
        Ambient Air Pollution Is Associated With Increased Risk of Hospital Cardiac Readmissions of Myocardial Infarction Survivors in Five European Cities.
        2005https://doi.org/10.1161/CIRCULATIONAHA.105.548743
        • Solimini A.G.
        • Renzi M.
        Association between air pollution and emergency room visits for atrial fibrillation.
        Int. J. Environ. Res. Public Health. 2017; 14https://doi.org/10.3390/ijerph14060661
        • Tang L.
        • Wang Q.
        • Cheng Z.
        • Hu B.
        • Liu J.
        • Hu Y.
        Air pollution and venous thrombosis: a meta-analysis.
        Sci. Rep. 2016; 6: 32794https://doi.org/10.1038/srep32794
        • Robertson S.
        • Miller M.R.
        Ambient air pollution and thrombosis.
        Part. Fibre Toxicol. 2018; 15: 1-16https://doi.org/10.1186/s12989-017-0237-x
        • Tang L.
        • Wang Q.Y.
        • Cheng Z.P.
        • Hu B.
        • Di Liu J.
        • Hu Y.
        Air pollution and venous thrombosis: a meta-analysis.
        Sci. Rep. 2016; 6: 1-8https://doi.org/10.1038/srep32794
        • Renzi M.
        • Stafoggia M.
        • Faustini A.
        • Cesaroni G.
        • Cattani G.
        • Forastiere F.
        Analysis of temporal variability in the short-term effects of ambient air pollutants on nonaccidental mortality in Rome, Italy (1998–2014).
        Environ. Health Perspect. 2017; 125https://doi.org/10.1289/EHP19
        • Gandini M.
        • Berti G.
        • Cattani G.
        • Faustini A.
        • Scarinzi C.
        • De F.
        • Accetta G.
        • Angiuli L.
        • Caldara S.
        • Carreras G.
        • Casale P.
        • Di Biagio K.
        • Giannini S.
        • Iuzzolino C.
        • Lanzani G.
        • Lauriola P.
        • Leuci P.
        • Mariuz M.
        • Marchesi S.
        • Nocioni A.
        • Pistollato S.
        Environmental indicators in EpiAir2 project: air quality data for epidemiological surveillance (in Italian).
        Epidemiol. Prev. 2013; 37: 209-219
        • Stafoggia M.
        • Forastiere F.
        • Faustini A.
        • Biggeri A.
        • Bisanti L.
        • Cadum E.
        • Cernigliaro A.
        • Mallone S.
        • Pandolfi P.
        • Serinelli M.
        • Tessari R.
        • Vigotti M.A.
        • Perucci C.A.
        Susceptibility factors to ozone-related mortality: a population-based case-crossover analysis.
        Am. J. Respir. Crit. Care Med. 2010; 182: 376-384https://doi.org/10.1164/rccm.200908-1269OC
        • Steadman R.G.
        The assessment of sultriness. Part I: a temperature-humidity index based on human physiology and clothing science.
        J. Appl. Meteorol. 1979; 18: 861-873https://doi.org/10.1175/1520-0450(1979)018<0861:TAOSPI>2.0.CO;2
        • O’Neill M.S.
        • Zanobetti A.
        • Schwartz J.
        Modifiers of the temperature and mortality association in seven US cities.
        Am. J. Epidemiol. 2003; 157: 1074-1082https://doi.org/10.1093/aje/kwg096
        • Maclure M.
        The case-crossover design: a method for studying transient effects on the risk of acute events.
        Am. J. Epidemiol. 1991; 133: 144-153
        • Faustini A.
        • Stafoggia M.
        • Renzi M.
        • Cesaroni G.
        • Alessandrini E.
        • Davoli M.
        • Forastiere F.
        Does chronic exposure to high levels of nitrogen dioxide exacerbate the short-term effects of airborne particles?.
        Occup. Environ. Med. 2016; oemed-2016-103666https://doi.org/10.1136/oemed-2016-103666
        • Stafoggia M.
        • Colais P.
        • Serinelli M.
        Methods of statistical analysis to evaluate the short term effects of air pollution for the EpiAir Project (in Italian).
        Epidemiol. Prev. 2009; 33: 53-63
        • Faustini A.
        • Stafoggia M.
        • Berti G.
        • Bisanti L.
        • Chiusolo M.
        • Cernigliaro A.
        • Mallone S.
        • Primeranoe R.
        • Scarnato C.
        • Simonato L.
        • Vigotti M.A.
        • Forastiere F.
        The relationship between ambient particulate matter and respiratory mortality: a multi-city study in Italy.
        Eur. Respir. J. 2011; 38: 538-547https://doi.org/10.1183/09031936.00093710
        • Gasparrini A.
        Distributed lag linear and non-linear models in R: the package dlnm.
        J. Stat. Softw. 2011; 43: 1-20
        • R Development Core Team
        R: A Language and Environment for Statistical Computing.
        2004 (doi:3–900051–00–3)
        • Brook R.D.
        • Rajagopalan S.
        • Pope C.A.
        • Brook J.R.
        • Bhatnagar A.
        • Diez-Roux A.V.
        • Holguin F.
        • Hong Y.
        • Luepker R.V.
        • Mittleman M.A.
        • Peters A.
        • Siscovick D.
        • Smith S.C.
        • Whitsel L.
        • Kaufman J.D.
        Particulate matter air pollution and cardiovascular disease.
        Circulation. 2010; 121: 2331-2378https://doi.org/10.1161/CIR.0b013e3181dbece1
        • Donaldson K.
        • Stone V.
        • Seaton A.
        • MacNee W.
        Ambient particle inhalation and the cardiovascular system: potential mechanisms.
        Environ. Health Perspect. 2001; 109: 523-527https://doi.org/10.2307/3454663
        • Franchini M.
        • Guida A.
        • Tufano A.
        • Coppola A.
        Air pollution, vascular disease and thrombosis: linking clinical data and pathogenic mechanisms.
        J. Thromb. Haemost. 2012; 10: 2438-2451https://doi.org/10.1111/jth.12006
        • Franchini M.
        • Mannucci P.M.
        Venous and arterial thrombosis: different sides of the same coin?.
        Eur. J. Intern. Med. 2008; 19: 476-481https://doi.org/10.1016/j.ejim.2007.10.019
        • Franchini M.
        • Mannucci P.O.
        Thrombogenicity and cardiovascular effects of ambient air pollution.
        Blood. 2011; 118: 2405-2412https://doi.org/10.1182/blood-2011-04-343111
        • Baccarelli A.
        • Zanobetti A.
        • Martinelli I.
        • Grillo P.
        • Hou L.
        • Giacomini S.
        • Bonzini M.
        • Lanzani G.
        • Mannucci P.M.
        • Bertazzi P.A.
        • Schwartz J.
        Effects of exposure to air pollution on blood coagulation.
        J. Thromb. Haemost. 2007; 5: 252-260https://doi.org/10.1111/j.1538-7836.2007.02300.x
        • Colais P.
        • Serinelli M.
        • Faustini A.
        • Stafoggia M.
        • Randi G.
        • Tessari R.
        • Chiusolo M.
        • Pacelli B.
        • Mallone S.
        • Vigotti M.A.
        • Cernigliaro A.
        Inquinamento atmosferico e ricoveri ospedalieri urgenti in nove città italiane. Risultati del Progetto EpiAir Air Pollution and Urgent Hospital Admissions in Nine Italian Cities. Results of the EpiAir Project.
        33. 2009
        • Martinelli N.
        • Girelli D.
        • Cigolini D.
        • Sandri M.
        • Ricci G.
        • Rocca G.
        • Olivieri O.
        Access rate to the emergency department for venous thromboembolism in relationship with coarse and fine particulate matter air pollution.
        PLoS One. 2012; 7https://doi.org/10.1371/journal.pone.0034831
        • Dales R.E.
        • Cakmak S.
        • Vidal C.B.
        Air pollution and hospitalization for venous thromboembolic disease in Chile.
        J. Thromb. Haemost. 2010; 8: 669-674https://doi.org/10.1111/j.1538-7836.2010.03760.x
        • Milojevic A.
        • Wilkinson P.
        • Armstrong B.
        • Bhaskaran K.
        • Smeeth L.
        • Hajat S.
        Short-term effects of air pollution on a range of cardiovascular events in England and Wales: case-crossover analysis of the MINAP database, hospital admissions and mortality.
        Heart. 2014; 100: 1093-1098https://doi.org/10.1136/heartjnl-2013-304963
        • Kloog I.
        • Zanobetti A.
        • Nordio F.
        • Coull B.A.
        • Baccarelli A.A.
        • Schwartz J.
        Effects of airborne fine particles (PM2.5) on deep vein thrombosis admissions in the northeastern United States.
        J. Thromb. Haemost. 2015; 13: 768-774https://doi.org/10.1111/jth.12873
        • Boulay F.
        • Berthier F.
        • Schoukroun G.
        • Raybaut C.
        • Gendreike Y.
        • Blaive B.
        Seasonal variations in hospital admission for deep vein thrombosis and pulmonary embolism: analysis of discharge data.
        BMJ. 2001; 323: 601-602https://doi.org/10.1136/bmj.323.7313.601
        • Manfredini R.
        • Imberti D.
        • Gallerani M.
        • Verso M.
        • Pistelli R.
        • Ageno W.
        • Agnelli G.
        Seasonal variation in the occurrence of venous thromboembolism: data from the MASTER registry.
        Clin. Appl. Thromb. 2009; 15: 309-315https://doi.org/10.1177/1076029608319947
        • Stafoggia M.
        • Samoli E.
        • Alessandrini E.
        • Cadum E.
        • Ostro B.
        • Berti G.
        • Faustini A.
        • Jacquemin B.
        • Linares C.
        • Pascal M.
        • Randi G.
        • Ranzi A.
        • Stivanello E.
        • Forastiere F.
        Short-term associations between fine and coarse particulate matter and hospitalizations in Southern Europe: results from the MED-PARTICLES project.
        Environ. Health Perspect. 2013; 121: 1026-1033https://doi.org/10.1289/ehp.1206151
        • Zöller B.
        • Li X.
        • Ohlsson H.
        • Sundquist J.
        • Sundquist K.
        Seasonal variation of pulmonary embolism and age dependence.
        Thromb. Res. 2017; 150: 76-77https://doi.org/10.1016/j.thromres.2016.12.024
        • Silverstein M.D.
        • Heit J.A.
        • Mohr D.N.
        • Petterson T.M.
        • O’Fallon W.M.
        • Melton L.J.
        Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study.
        Arch. Intern. Med. 1998; 158: 585-593
        • Le Gal G.
        • Righini M.
        • Roy P.M.
        • Meyer G.
        • Aujesky D.
        • Perrier A.
        • Bounameaux H.
        Differential value of risk factors and clinical signs for diagnosing pulmonary embolism according to age.
        J. Thromb. Haemost. 2005; 3: 2457-2464https://doi.org/10.1111/j.1538-7836.2005.01598.x
        • Barrios D.
        • Morillo R.
        • Guerassimova I.
        • Barbero E.
        • Escobar-Morreale H.
        • Cohen A.T.
        • Becattini C.
        • Tapson V.
        • Yusen R.
        • Jimenez D.
        Sex differences in the characteristics and short-term prognosis of patients presenting with acute symptomatic pulmonary embolism.
        PLoS One. 2017; 12e0187648https://doi.org/10.1371/journal.pone.0187648
        • Deguchi H.
        • Pecheniuk N.M.
        • Elias D.J.
        • Averell P.M.
        • Griffin J.H.
        High-density lipoprotein deficiency and dyslipoproteinemia associated with venous thrombosis in men.
        Circulation. 2005; 112: 893-899https://doi.org/10.1161/CIRCULATIONAHA.104.521344
        • Hansson P.-O.
        • Eriksson H.
        • Welin L.
        • Svärdsudd K.
        • Wilhelmsen L.
        Smoking and abdominal obesity.
        Arch. Intern. Med. 1999; 159: 1886https://doi.org/10.1001/archinte.159.16.1886
        • Orioli R.
        • Cremona G.
        • Ciancarella L.
        • Solimini A.G.
        Association between PM10, PM2.5, NO2, O3 and self-reported diabetes in Italy: a cross-sectional, ecological study.
        PLoS One. 2018; 13: e0191112https://doi.org/10.1371/journal.pone.0191112
        • Farhat S.C.L.
        • Silva C.A.
        • Orione M.A.M.
        • Campos L.M.A.
        • Sallum A.M.E.
        • Braga A.L.F.
        Air pollution in autoimmune rheumatic diseases: A review.
        Autoimmun. Rev. 2011; 11: 14-21https://doi.org/10.1016/j.autrev.2011.06.008
        • Ritz S.A.
        Air pollution as a potential contributor to the ‘epidemic’ of autoimmune disease.
        Med. Hypotheses. 2010; 74: 110-117https://doi.org/10.1016/j.mehy.2009.07.033
        • Müller-Bühl
        • Leutgeb
        • Engeser
        • Achankeng N.
        • Szecsenyi
        • Laux
        Varicose veins are a risk factor for deep venous thrombosis in general practice patients.
        Vasa. 2012; 41: 360-365https://doi.org/10.1024/0301-1526/a000222