Advertisement
Full Length Article| Volume 169, P76-81, September 2018

Next-generation DNA sequencing to identify novel genetic risk factors for cerebral vein thrombosis

      Highlights

      • Cerebral vein thrombosis (CVT) is a rare life-threatening disease.
      • Genetic risk factors for CVT are still largely unknown.
      • We performed NGS of 734 hemostatic genes in 171 CVT patients and 298 controls.
      • We identified a common variant rs8176719 in the ABO gene associated with CVT.

      Abstract

      Background

      Cerebral vein thrombosis (CVT) is a rare, life-threatening disease affecting one adult per 100,000 per year. Genetic risk factors are deficiencies of the natural anticoagulant proteins antithrombin, protein C, protein S or single nucleotide polymorphisms such as factor V Leiden and prothrombin 20210A. In 20% of patients, the cause of CVT remains unknown.

      Aim

      To identify novel genetic risk factors for CVT using targeted next-generation DNA sequencing (NGS).

      Methods

      We investigated 171 CVT patients and 298 healthy controls. Patients were selected using the following criteria: objective diagnosis of CVT, no active cancer. We performed targeted NGS analysis of the protein-coding regions of 734 candidate genes related to hemostasis and inflammation, 150 ancestry informative markers and 28 thrombosis-associated variants.

      Results

      We identified 3723 common and low frequency variants with minor allele frequency (MAF) >1% in 590 genes. Single variant association testing using logistic regression analysis identified rs8176719 insertion/deletion (indel) variant in the ABO gene associated with CVT (age and sex adjusted OR 2.03; 95% CI 1.52–2.73; P = 2.07 × 10−6; Bonferroni P = 0.008). In addition, we identified 8839 rare variants (MAF ≤ 1%) in 723 genes. Gene-based association analysis of these rare variants using a burden test revealed only a tentative association of non-coding variants located in the F8 locus with CVT.

      Conclusion

      Targeted NGS identified a common indel variant rs8176719 in the ABO gene. Gene-based tests of association failed to reveal genomic loci with a cumulative burden of rare variants associated with CVT.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Thrombosis Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Coutinho J.M.
        • Zuurbier S.M.
        • Aramideh M.
        • Stam J.
        The incidence of cerebral venous thrombosis: a cross-sectional study.
        Stroke. 2012; 43: 3375-3377
        • Martinelli I.
        • Passamonti S.M.
        • Rossi E.
        • De S.V.
        Cerebral sinus-venous thrombosis.
        Intern. Emerg. Med. 2012; 7: S221-S225
        • Stam J.
        Thrombosis of the cerebral veins and sinuses.
        N. Engl. J. Med. 2005; 352: 1791-1798
        • Silvis S.M.
        • Middeldorp S.
        • Zuurbier S.M.
        • Cannegieter S.C.
        • Coutinho J.M.
        Risk factors for cerebral venous thrombosis.
        Semin. Thromb. Hemost. 2016; 42: 622-631
        • Einhaupl K.
        • Stam J.
        • Bousser M.G.
        • de Bruijn S.F.
        • Ferro J.M.
        • Martinelli I.
        • et al.
        EFNS guideline on the treatment of cerebral venous and sinus thrombosis in adult patients.
        Eur. J. Neurol. 2010; 17: 1229-1235
        • Saposnik G.
        • Barinagarrementeria F.
        • Brown Jr., R.D.
        • Bushnell C.D.
        • Cucchiara B.
        • Cushman M.
        • et al.
        Diagnosis and management of cerebral venous thrombosis: a statement for healthcare professionals from the American Heart Association/American Stroke Association.
        Stroke. 2011; 42: 1158-1192
        • Ferro J.M.
        • Canhao P.
        • Stam J.
        • Bousser M.G.
        • Barinagarrementeria F.
        Prognosis of cerebral vein and dural sinus thrombosis: results of the International Study on Cerebral Vein and Dural Sinus Thrombosis (ISCVT).
        Stroke. 2004; 35: 664-670
        • Coutinho J.M.
        • Ferro J.M.
        • Canhao P.
        • Barinagarrementeria F.
        • Cantu C.
        • Bousser M.G.
        • et al.
        Cerebral venous and sinus thrombosis in women.
        Stroke. 2009; 40: 2356-2361
        • Lauw M.N.
        • Barco S.
        • Coutinho J.M.
        • Middeldorp S.
        Cerebral venous thrombosis and thrombophilia: a systematic review and meta-analysis.
        Semin. Thromb. Hemost. 2013; 39: 913-927
        • Lotta L.A.
        • Wang M.
        • Yu J.
        • Martinelli I.
        • Yu F.
        • Passamonti S.M.
        • et al.
        Identification of genetic risk variants for deep vein thrombosis by multiplexed next-generation sequencing of 186 hemostatic/pro-inflammatory genes.
        BMC Med. Genet. 2012; 5: 7
        • Lotta L.A.
        • Tuana G.
        • Yu J.
        • Martinelli I.
        • Wang M.
        • Yu F.
        • et al.
        Next-generation sequencing study finds an excess of rare, coding single-nucleotide variants of ADAMTS13 in patients with deep vein thrombosis.
        J. Thromb. Haemost. 2013; 11: 1228-1239
        • Gorski M.M.
        • Lotta L.A.
        • Pappalardo E.
        • de Haan H.G.
        • Passamonti S.M.
        • Van H.V.
        • et al.
        Single nucleotide variant rs2232710 in the protein Z-dependent protease inhibitor (ZPI, SERPINA10) gene is not associated with deep vein thrombosis.
        PLoS One. 2016; 11e0151347
        • Pagliari M.T.
        • Lotta L.A.
        • de Haan H.G.
        • Valsecchi C.
        • Casoli G.
        • Pontiggia S.
        • et al.
        Next-generation sequencing and in vitro expression study of ADAMTS13 single nucleotide variants in deep vein thrombosis.
        PLoS One. 2016; 11e0165665
        • McLaren W.
        • Pritchard B.
        • Rios D.
        • Chen Y.
        • Flicek P.
        • Cunningham F.
        Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor.
        Bioinformatics. 2010; 26: 2069-2070
        • Sherry S.T.
        • Ward M.
        • Sirotkin K.
        dbSNP-database for single nucleotide polymorphisms and other classes of minor genetic variation.
        Genome Res. 1999; 9: 677-679
        • Landrum M.J.
        • Lee J.M.
        • Riley G.R.
        • Jang W.
        • Rubinstein W.S.
        • Church D.M.
        • et al.
        ClinVar: public archive of relationships among sequence variation and human phenotype.
        Nucleic Acids Res. 2014; 42: D980-D985
        • Ng P.C.
        • Henikoff S.
        SIFT: predicting amino acid changes that affect protein function.
        Nucleic Acids Res. 2003; 31: 3812-3814
        • Adzhubei I.
        • Jordan D.M.
        • Sunyaev S.R.
        Predicting functional effect of human missense mutations using PolyPhen-2.
        Curr. Protoc. Hum. Genet. 2013; (Jan;Chapter 7:Unit7.20): 7.20.1-7.20.41
        • Khurana E.
        • Fu Y.
        • Colonna V.
        • Mu X.J.
        • Kang H.M.
        • Lappalainen T.
        • et al.
        Integrative annotation of variants from 1092 humans: application to cancer genomics.
        Science. 2013; 3421235587
        • Abecasis G.R.
        • Auton A.
        • Brooks L.D.
        • DePristo M.A.
        • Durbin R.M.
        • Handsaker R.E.
        • et al.
        An integrated map of genetic variation from 1,092 human genomes.
        Nature. 2012; 491: 56-65
        • Danecek P.
        • Auton A.
        • Abecasis G.
        • Albers C.A.
        • Banks E.
        • Depristo M.A.
        • et al.
        The variant call format and VCFtools.
        Bioinformatics. 2011; 27: 2156-2158
        • Lin H.
        • Wang M.
        • Brody J.A.
        • Bis J.C.
        • Dupuis J.
        • Lumley T.
        • et al.
        Strategies to design and analyze targeted sequencing data: cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study.
        Circ. Cardiovasc. Genet. 2014; 7: 335-343
        • Purcell S.
        • Neale B.
        • Todd-Brown K.
        • Thomas L.
        • Ferreira M.A.
        • Bender D.
        • et al.
        PLINK: a tool set for whole-genome association and population-based linkage analyses.
        Am. J. Hum. Genet. 2007; 81: 559-575
        • Wu M.C.
        • Lee S.
        • Cai T.
        • Li Y.
        • Boehnke M.
        • Lin X.
        Rare-variant association testing for sequencing data with the sequence kernel association test.
        Am. J. Hum. Genet. 2011; 89: 82-93
        • Clayton D.
        • Leung H.T.
        An R package for analysis of whole-genome association studies.
        Hum. Hered. 2007; 64: 45-51
        • Preston A.E.
        • Barr A.
        The plasma concentration of factor VIII In The Normal Population. II. The effects of age, sex and blood group.
        Br. J. Haematol. 1964; 10: 238-245
        • Orstavik K.H.
        • Magnus P.
        • Reisner H.
        • Berg K.
        • Graham J.B.
        • Nance W.
        Factor VIII and factor IX in a twin population. Evidence for a major effect of ABO locus on factor VIII level.
        Am. J. Hum. Genet. 1985; 37: 89-101
        • Souto J.C.
        • Almasy L.
        • Muniz-Diaz E.
        • Soria J.M.
        • Borrell M.
        • Bayen L.
        • et al.
        Functional effects of the ABO locus polymorphism on plasma levels of von Willebrand factor, factor VIII, and activated partial thromboplastin time.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 2024-2028
        • Dick W.
        • Schneider W.
        • Brockmueller K.
        • Mayer W.
        Interrelations of thrombo-embolic diseases and blood-group distribution.
        Thromb. Diath. Haemorrh. 1963; 143: 472-474
        • Jick H.
        • Slone D.
        • Westerholm B.
        • Inman W.H.
        • Vessey M.P.
        • Shapiro S.
        • et al.
        Venous thromboembolic disease and ABO blood type. A cooperative study.
        Lancet. 1969; 1: 539-542
        • Koster T.
        • Blann A.D.
        • Briet E.
        • Vandenbroucke J.P.
        • Rosendaal F.R.
        Role of clotting factor VIII in effect of von Willebrand factor on occurrence of deep-vein thrombosis.
        Lancet. 1995; 345: 152-155
        • Heit J.A.
        • Armasu S.M.
        • Asmann Y.W.
        • Cunningham J.M.
        • Matsumoto M.E.
        • Petterson T.M.
        • et al.
        A genome-wide association study of venous thromboembolism identifies risk variants in chromosomes 1q24.2 and 9q.
        J. Thromb. Haemost. 2012; 10: 1521-1531
        • Soria J.M.
        • Morange P.E.
        • Vila J.
        • Souto J.C.
        • Moyano M.
        • Tregouet D.A.
        • et al.
        Multilocus genetic risk scores for venous thromboembolism risk assessment.
        J. Am. Heart Assoc. 2014; 3e001060
        • van Hylckama Vlieg A.
        • Flinterman L.E.
        • Bare L.A.
        • Cannegieter S.C.
        • Reitsma P.H.
        • Arellano A.R.
        • et al.
        Genetic variations associated with recurrent venous thrombosis.
        Circ. Cardiovasc. Genet. 2014; 7: 806-813
        • Bertina R.M.
        • Koeleman B.P.
        • Koster T.
        • Rosendaal F.R.
        • Dirven R.J.
        • De R.H.
        • et al.
        Mutation in blood coagulation factor V associated with resistance to activated protein C.
        Nature. 1994; 369: 64-67
        • Poort S.R.
        • Rosendaal F.R.
        • Reitsma P.H.
        • Bertina R.M.
        A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis.
        Blood. 1996; 88: 3698-3703
        • Uitte de W.S.
        • de Visser M.C.
        • Houwing-Duistermaat J.J.
        • Rosendaal F.R.
        • Vos H.L.
        • Bertina R.M.
        Genetic variation in the fibrinogen gamma gene increases the risk for deep venous thrombosis by reducing plasma fibrinogen gamma' levels.
        Blood. 2005; 106: 4176-4183