Advertisement
Review Article| Volume 164, P54-62, April 2018

Download started.

Ok

Role of plasminogen activator inhibitor-1 in coronary pathophysiology

  • Author Footnotes
    1 Authors contributed equally to the completion of the review.
    Richard G. Jung
    Footnotes
    1 Authors contributed equally to the completion of the review.
    Affiliations
    CAPITAL Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada

    Vascular Biology and Experimental Medicine Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada

    Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
    Search for articles by this author
  • Author Footnotes
    1 Authors contributed equally to the completion of the review.
    Trevor Simard
    Footnotes
    1 Authors contributed equally to the completion of the review.
    Affiliations
    CAPITAL Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada

    Vascular Biology and Experimental Medicine Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada

    Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada

    Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
    Search for articles by this author
  • Alisha Labinaz
    Affiliations
    CAPITAL Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
    Search for articles by this author
  • F. Daniel Ramirez
    Affiliations
    CAPITAL Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada

    Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada

    School of Epidemiology, Public Health and Preventive Medicine, University of Ottawa, Ottawa, Ontario, Canada
    Search for articles by this author
  • Pietro Di Santo
    Affiliations
    CAPITAL Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada

    Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
    Search for articles by this author
  • Pouya Motazedian
    Affiliations
    CAPITAL Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
    Search for articles by this author
  • Rebecca Rochman
    Affiliations
    CAPITAL Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada

    Vascular Biology and Experimental Medicine Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada

    Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
    Search for articles by this author
  • Chantal Gaudet
    Affiliations
    Vascular Biology and Experimental Medicine Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
    Search for articles by this author
  • Mohammad Ali Faraz
    Affiliations
    CAPITAL Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
    Search for articles by this author
  • Rob S.B. Beanlands
    Affiliations
    Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
    Search for articles by this author
  • Benjamin Hibbert
    Correspondence
    Corresponding author at: University of Ottawa Heart Institute, 40 Ruskin Street, H-4238, Ottawa K1Y 4W7, Ontario, Canada.
    Affiliations
    CAPITAL Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada

    Vascular Biology and Experimental Medicine Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada

    Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada

    Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
    Search for articles by this author
  • Author Footnotes
    1 Authors contributed equally to the completion of the review.
Published:February 19, 2018DOI:https://doi.org/10.1016/j.thromres.2018.02.135

      Highlights

      • Plasminogen activator inhibitor-1 (PAI-1) controls arterial remodeling & thrombosis.
      • Elevated PAI-1 has been identified as a potential biomarker for vascular disease.
      • PAI-1 has been implicated in in-stent restenosis and stent thrombosis.
      • Therapeutics against PAI-1 has shown promising results in pre-clinical models.

      Abstract

      The standard of care for obstructive atherosclerotic coronary disease is revascularization, predominantly achieved via percutaneous placement of a stent with concurrent medical therapy. Advancements in percutaneous coronary intervention (PCI) have dramatically improved outcomes. However, major complications from PCI due to target lesion failure continue to occur at rates between 5 and 10% in the first twelve months following intervention limiting its therapeutic efficacy. Plasminogen activator inhibitor-1 (PAI-1) is a protein of interest for both arterial remodeling and thrombotic risk as it regulates cell migration and vascular thrombosis. Elevated PAI-1 antigen levels have been identified as a potential biomarker for coronary artery disease and metabolic syndrome while being modulated by a number of atherosclerotic risk factors. Although linked by some studies as a marker of disease severity and prognosis, it remains to be understood whether it is also a mediator and/or therapeutic target of vascular disease. In this review, we discuss the current understanding of PAI-1 in vascular disease and its potential role in in-stent restenosis and stent thrombosis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Thrombosis Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Simard T.
        • Hibbert B.
        • Ramirez F.D.
        • Froeschl M.
        • Chen Y.X.
        • O'Brien E.R.
        The evolution of coronary stents: a brief review.
        Can. J. Cardiol. 2014; 30: 35-45
        • Colman R.W.
        Are hemostasis and thrombosis two sides of the same coin?.
        J. Exp. Med. 2006; 203: 493-495
        • Watson T.
        • Shantsila E.
        • Lip G.Y.
        Mechanisms of thrombogenesis in atrial fibrillation: Virchow's triad revisited.
        Lancet. 2009; 373: 155-166
        • Broos K.
        • Feys H.B.
        • De Meyer S.F.
        • Vanhoorelbeke K.
        • Deckmyn H.
        Platelets at work in primary hemostasis.
        Blood Rev. 2011; 25: 155-167
        • Bagoly Z.
        • Koncz Z.
        • Harsfalvi J.
        • Muszbek L.
        Factor XIII, clot structure, thrombosis.
        Thromb. Res. 2012; 129: 382-387
        • Chapin J.C.
        • Hajjar K.A.
        Fibrinolysis and the control of blood coagulation.
        Blood Rev. 2015; 29: 17-24
        • Hoylaerts M.
        • Rijken D.C.
        • Lijnen H.R.
        • Collen D.
        Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin.
        J. Biol. Chem. 1982; 257: 2912-2919
        • van Meijer M.
        • Pannekoek H.
        Structure of plasminogen activator inhibitor 1 (PAI-1) and its function in fibrinolysis: an update.
        Fibrinolysis. 1995; 9: 263-276
        • De Taeye B.
        • Smith L.H.
        • Vaughan D.E.
        Plasminogen activator inhibitor-1: a common denominator in obesity, diabetes and cardiovascular disease.
        Curr. Opin. Pharmacol. 2005; 5: 149-154
        • Meade T.W.
        • Ruddock V.
        • Stirling Y.
        • Chakrabarti R.
        • Miller G.J.
        Fibrinolytic activity, clotting factors, and long-term incidence of ischaemic heart disease in the Northwick Park Heart Study.
        Lancet. 1993; 342: 1076-1079
        • Binder B.R.
        • Christ G.
        • Gruber F.
        • Grubic N.
        • Hufnagl P.
        • Krebs M.
        • Mihaly J.
        • Prager G.W.
        Plasminogen activator inhibitor 1: physiological and pathophysiological roles.
        News Physiol. Sci. 2002; 17: 56-61
        • Carrell R.W.
        • Pemberton P.A.
        • Boswell D.R.
        The serpins: evolution and adaptation in a family of protease inhibitors.
        Cold Spring Harb. Symp. Quant. Biol. 1987; 52: 527-535
        • Vaughan D.E.
        PAI-1 and atherothrombosis.
        J. Thromb. Haemost. 2005; 3: 1879-1883
        • Strandberg L.
        • Lawrence D.
        • Ny T.
        The organization of the human-plasminogen-activator-inhibitor-1 gene. Implications on the evolution of the serine-protease inhibitor family.
        Eur. J. Biochem. 1988; 176: 609-616
        • Loskutoff D.J.
        Regulation of PAI-1 gene expression.
        Fibrinolysis. 1991; 5: 197-206
        • Loskutoff D.J.
        • Linders M.
        • Keijer J.
        • Veerman H.
        • van Heerikhuizen H.
        • Pannekoek H.
        Structure of the human plasminogen activator inhibitor 1 gene: nonrandom distribution of introns.
        Biochemistry. 1987; 26: 3763-3768
        • Brown N.J.
        • Kim K.-S.
        • Chen Y.-Q.
        • Blevins L.S.
        • Nadeau J.H.
        • Meranze S.G.
        • Vaughan D.E.
        Synergistic effect of adrenal steroids and angiotensin II on plasminogen activator Inhibitor-1 production.
        J. Clin. Endocrinol. Metab. 2000; 85: 336-344
        • van Zonneveld A.J.
        • Curriden S.A.
        • Loskutoff D.J.
        Type 1 plasminogen activator inhibitor gene: functional analysis and glucocorticoid regulation of its promoter.
        Proc. Natl. Acad. Sci. U. S. A. 1988; 85: 5525-5529
        • Skurk T.
        • Lee Y.M.
        • Hauner H.
        Angiotensin II and its metabolites stimulate PAI-1 protein release from human adipocytes in primary culture.
        Hypertension. 2001; 37: 1336-1340
        • Brown N.J.
        • Nakamura S.
        • Ma L.
        • Nakamura I.
        • Donnert E.
        • Freeman M.
        • Vaughan D.E.
        • Fogo A.B.
        Aldosterone modulates plasminogen activator inhibitor-1 and glomerulosclerosis in vivo.
        Kidney Int. 2000; 58: 1219-1227
        • Eriksson P.
        • Nilsson L.
        • Karpe F.
        • Hamsten A.
        Very-low-density lipoprotein response element in the promoter region of the human plasminogen activator inhibitor-1 gene implicated in the impaired fibrinolysis of hypertriglyceridemia.
        Arterioscler. Thromb. Vasc. Biol. 1998; 18: 20-26
        • Verges B.
        Pathophysiology of diabetic dyslipidaemia: where are we?.
        Diabetologia. 2015; 58: 886-899
        • Pont F.
        • Duvillard L.
        • Florentin E.
        • Gambert P.
        • Verges B.
        Early kinetic abnormalities of apoB-containing lipoproteins in insulin-resistant women with abdominal obesity.
        Arterioscler. Thromb. Vasc. Biol. 2002; 22: 1726-1732
        • Chen Y.-Q.
        • Su M.
        • Walia R.R.
        • Hao Q.
        • Covington J.W.
        • Vaughan D.E.
        Sp1 sites mediate activation of the plasminogen activator Inhibitor-1 promoter by glucose in vascular smooth muscle cells.
        J. Biol. Chem. 1998; 273: 8225-8231
        • Song C.
        • Burgess S.
        • Eicher J.D.
        • O'Donnell C.J.
        • Johnson A.D.
        Causal effect of plasminogen activator inhibitor type 1 on coronary heart disease.
        J. Am. Heart Assoc. 2017; 6
        • Dennler S.
        • Itoh S.
        • Vivien D.
        • ten Dijke P.
        • Huet S.
        • Gauthier J.M.
        Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene.
        EMBO J. 1998; 17: 3091-3100
        • Kunz C.
        • Pebler S.
        • Otte J.
        • von der Ahe D.
        Differential regulation of plasminogen activator and inhibitor gene transcription by the tumor suppressor p53.
        Nucleic Acids Res. 1995; 23: 3710-3717
        • Boekholdt S.M.
        • Bijsterveld N.R.
        • Moons A.H.
        • Levi M.
        • Buller H.R.
        • Peters R.J.
        Genetic variation in coagulation and fibrinolytic proteins and their relation with acute myocardial infarction: a systematic review.
        Circulation. 2001; 104: 3063-3068
        • Huang J.
        • Sabater-Lleal M.
        • Asselbergs F.W.
        • Tregouet D.
        • Shin S.Y.
        • Ding J.
        • Baumert J.
        • Oudot-Mellakh T.
        • Folkersen L.
        • Johnson A.D.
        • et al.
        Genome-wide association study for circulating levels of PAI-1 provides novel insights into its regulation.
        Blood. 2012; 120: 4873-4881
        • Koch W.
        • Schrempf M.
        • Erl A.
        • Mueller J.C.
        • Hoppmann P.
        • Schomig A.
        • Kastrati A.
        4G/5G polymorphism and haplotypes of SERPINE1 in atherosclerotic diseases of coronary arteries.
        Thromb. Haemost. 2010; 103: 1170-1180
        • Alessi M.C.
        • Poggi M.
        • Juhan-Vague I.
        Plasminogen activator inhibitor-1, adipose tissue and insulin resistance.
        Curr. Opin. Lipidol. 2007; 18: 240-245
        • Alessi M.C.
        • Juhan-Vague I.
        PAI-1 and the metabolic syndrome: links, causes, and consequences.
        Arterioscler. Thromb. Vasc. Biol. 2006; 26: 2200-2207
        • Landin K.
        • Tengborn L.
        • Smith U.
        Elevated fibrinogen and plasminogen activator inhibitor (PAI-1) in hypertension are related to metabolic risk factors for cardiovascular disease.
        J. Intern. Med. 1990; 227: 273-278
        • Song J.
        • Yoon Y.M.
        • Jung H.J.
        • Hong S.H.
        • Park H.
        • Kim J.Q.
        Plasminogen activator inhibitor-1 4G/5G promoter polymorphism and coagulation factor VII Arg353-->Gln polymorphism in Korean patients with coronary artery disease.
        J. Korean Med. Sci. 2000; 15: 146-152
        • Juhan-Vague I.
        • Roul C.
        • Alessi M.C.
        • Ardissone J.P.
        • Heim M.
        • Vague P.
        Increased plasminogen activator inhibitor activity in non insulin dependent diabetic patients--relationship with plasma insulin.
        Thromb. Haemost. 1989; 61: 370-373
        • Scarabin P.Y.
        • Aillaud M.F.
        • Amouyel P.
        • Evans A.
        • Luc G.
        • Ferrieres J.
        • Arveiler D.
        • Juhan-Vague I.
        Associations of fibrinogen, factor VII and PAI-1 with baseline findings among 10,500 male participants in a prospective study of myocardial infarction--the PRIME Study. Prospective Epidemiological Study of Myocardial Infarction.
        Thromb. Haemost. 1998; 80: 749-756
        • Tjarnlund-Wolf A.
        • Brogren H.
        • Lo E.H.
        • Wang X.
        Plasminogen activator inhibitor-1 and thrombotic cerebrovascular diseases.
        Stroke. 2012; 43: 2833-2839
        • Nikolopoulos G.K.
        • Bagos P.G.
        • Tsangaris I.
        • Tsiara C.G.
        • Kopterides P.
        • Vaiopoulos A.
        • Kapsimali V.
        • Bonovas S.
        • Tsantes A.E.
        The association between plasminogen activator inhibitor type 1 (PAI-1) levels, PAI-1 4G/5G polymorphism, and myocardial infarction: a Mendelian randomization meta-analysis.
        Clin. Chem. Lab. Med. 2014; 52: 937-950
        • Brogren H.
        • Wallmark K.
        • Deinum J.
        • Karlsson L.
        • Jern S.
        Platelets retain high levels of active plasminogen activator inhibitor 1.
        PLoS One. 2011; 6e26762
        • Ginsburg D.
        • Zeheb R.
        • Yang A.Y.
        • Rafferty U.M.
        • Andreasen P.A.
        • Nielsen L.
        • Dano K.
        • Lebo R.V.
        • Gelehrter T.D.
        cDNA cloning of human plasminogen activator-inhibitor from endothelial cells.
        J. Clin. Investig. 1986; 78: 1673-1680
        • van Mourik J.A.
        • Lawrence D.A.
        • Loskutoff D.J.
        Purification of an inhibitor of plasminogen activator (antiactivator) synthesized by endothelial cells.
        J. Biol. Chem. 1984; 259: 14914-14921
        • Jensen J.K.
        • Thompson L.C.
        • Bucci J.C.
        • Nissen P.
        • Gettins P.G.
        • Peterson C.B.
        • Andreasen P.A.
        • Morth J.P.
        Crystal structure of plasminogen activator inhibitor-1 in an active conformation with normal thermodynamic stability.
        J. Biol. Chem. 2011; 286: 29709-29717
        • Declerck P.J.
        • Gils A.
        • De Taeye B.
        Use of mouse models to study plasminogen activator inhibitor-1.
        Methods Enzymol. 2011; 499: 77-104
        • Sherman P.M.
        • Lawrence D.A.
        • Yang A.Y.
        • Vandenberg E.T.
        • Paielli D.
        • Olson S.T.
        • Shore J.D.
        • Ginsburg D.
        Saturation mutagenesis of the plasminogen activator inhibitor-1 reactive center.
        J. Biol. Chem. 1992; 267: 7588-7595
        • Lin Z.
        • Jiang L.
        • Yuan C.
        • Jensen J.K.
        • Zhang X.
        • Luo Z.
        • Furie B.C.
        • Furie B.
        • Andreasen P.A.
        • Huang M.
        Structural basis for recognition of urokinase-type plasminogen activator by plasminogen activator inhibitor-1.
        J. Biol. Chem. 2011; 286: 7027-7032
        • Dewilde M.
        • Strelkov S.V.
        • Rabijns A.
        • Declerck P.J.
        High quality structure of cleaved PAI-1-stab.
        J. Struct. Biol. 2009; 165: 126-132
        • Lawrence D.
        • Strandberg L.
        • Grundstrom T.
        • Ny T.
        Purification of active human plasminogen activator inhibitor 1 from Escherichia coli. Comparison with natural and recombinant forms purified from eucaryotic cells.
        Eur. J. Biochem. 1989; 186: 523-533
        • Yarmolinsky J.
        • Bordin Barbieri N.
        • Weinmann T.
        • Ziegelmann P.K.
        • Duncan B.B.
        • Ines Schmidt M.
        Plasminogen activator inhibitor-1 and type 2 diabetes: a systematic review and meta-analysis of observational studies.
        Sci. Rep. 2016; 617714
        • Ghosh A.K.
        • Vaughan D.E.
        PAI-1 in tissue fibrosis.
        J. Cell. Physiol. 2012; 227: 493-507
        • Levin E.G.
        • Santell L.
        Conversion of the active to latent plasminogen activator inhibitor from human endothelial cells.
        Blood. 1987; 70: 1090-1098
        • Loskutoff D.J.
        • Curriden S.A.
        The fibrinolytic system of the vessel wall and its role in the control of thrombosis.
        Ann. N. Y. Acad. Sci. 1990; 598: 238-247
        • Kruithof E.K.
        • Nicolosa G.
        • Bachmann F.
        Plasminogen activator inhibitor 1: development of a radioimmunoassay and observations on its plasma concentration during venous occlusion and after platelet aggregation.
        Blood. 1987; 70: 1645-1653
        • Booth N.A.
        • Robbie L.A.
        • Croll A.M.
        • Bennett B.
        Lysis of platelet-rich thrombi: the role of PAI-1.
        Ann. N. Y. Acad. Sci. 1992; 667: 70-80
        • Sakata Y.
        • Murakami T.
        • Noro A.
        • Mori K.
        • Matsuda M.
        The specific activity of plasminogen activator inhibitor-1 in disseminated intravascular coagulation with acute promyelocytic leukemia.
        Blood. 1991; 77: 1949-1957
        • Gils A.
        • Declerck P.J.
        Plasminogen activator inhibitor-1.
        Curr. Med. Chem. 2004; 11: 2323-2334
        • Sancho E.
        • Tonge D.W.
        • Hockney R.C.
        • Booth N.A.
        Purification and characterization of active and stable recombinant plasminogen-activator inhibitor accumulated at high levels in Escherichia coli.
        Eur. J. Biochem. 1994; 224: 125-134
        • Jensen J.K.
        • Wind T.
        • Andreasen P.A.
        The vitronectin binding area of plasminogen activator inhibitor-1, mapped by mutagenesis and protection against an inactivating organochemical ligand.
        FEBS Lett. 2002; 521: 91-94
        • Xu Z.
        • Balsara R.D.
        • Gorlatova N.V.
        • Lawrence D.A.
        • Castellino F.J.
        • Ploplis V.A.
        Conservation of critical functional domains in murine plasminogen activator inhibitor-1.
        J. Biol. Chem. 2004; 279: 17914-17920
        • Zhou A.
        • Huntington J.A.
        • Pannu N.S.
        • Carrell R.W.
        • Read R.J.
        How vitronectin binds PAI-1 to modulate fibrinolysis and cell migration.
        Nat. Struct. Biol. 2003; 10: 541-544
        • Seiffert D.
        Constitutive and regulated expression of vitronectin.
        Histol. Histopathol. 1997; 12: 787-797
        • Luo M.
        • Ji Y.
        • Luo Y.
        • Li R.
        • Fay W.P.
        • Wu J.
        Plasminogen activator Inhibitor-1 regulates the vascular expression of vitronectin.
        J. Thromb. Haemost. 2017; 15: 2451-2460
        • Sudhof T.C.
        • Rothman J.E.
        Membrane fusion: grappling with SNARE and SM proteins.
        Science. 2009; 323: 474-477
        • Blair P.
        • Flaumenhaft R.
        Platelet alpha-granules: basic biology and clinical correlates.
        Blood Rev. 2009; 23: 177-189
        • Robbie L.A.
        • Bennett B.
        • Croll A.M.
        • Brown P.A.
        • Booth N.A.
        Proteins of the fibrinolytic system in human thrombi.
        Thromb. Haemost. 1996; 75: 127-133
        • Fay W.P.
        • Murphy J.G.
        • Owen W.G.
        High concentrations of active plasminogen activator inhibitor-1 in porcine coronary artery thrombi.
        Arterioscler. Thromb. Vasc. Biol. 1996; 16: 1277-1284
        • Fay W.P.
        • Eitzman D.T.
        • Shapiro A.D.
        • Madison E.L.
        • Ginsburg D.
        Platelets inhibit fibrinolysis in vitro by both plasminogen activator inhibitor-1-dependent and -independent mechanisms.
        Blood. 1994; 83: 351-356
        • Roth G.J.
        • Hickey M.J.
        • Chung D.W.
        • Hickstein D.D.
        Circulating human blood platelets retain appreciable amounts of poly (A)+ RNA.
        Biochem. Biophys. Res. Commun. 1989; 160: 705-710
        • Brogren H.
        • Karlsson L.
        • Andersson M.
        • Wang L.
        • Erlinge D.
        • Jern S.
        Platelets synthesize large amounts of active plasminogen activator inhibitor 1.
        Blood. 2004; 104: 3943-3948
        • Landry P.
        • Plante I.
        • Ouellet D.L.
        • Perron M.P.
        • Rousseau G.
        • Provost P.
        Existence of a microRNA pathway in anucleate platelets.
        Nat. Struct. Mol. Biol. 2009; 16: 961-966
        • Corduan A.
        • Ple H.
        • Laffont B.
        • Wallon T.
        • Plante I.
        • Landry P.
        • Provost P.
        Dissociation of SERPINE1 mRNA from the translational repressor proteins Ago2 and TIA-1 upon platelet activation.
        Thromb. Haemost. 2015; 113: 1046-1059
        • Weyrich A.S.
        • Lindemann S.
        • Tolley N.D.
        • Kraiss L.W.
        • Dixon D.A.
        • Mahoney T.M.
        • Prescott S.P.
        • McIntyre T.M.
        • Zimmerman G.A.
        Change in protein phenotype without a nucleus: translational control in platelets.
        Semin. Thromb. Hemost. 2004; 30: 491-498
        • Kawai T.
        • Lal A.
        • Yang X.
        • Galban S.
        • Mazan-Mamczarz K.
        • Gorospe M.
        Translational control of cytochrome c by RNA-binding proteins TIA-1 and HuR.
        Mol. Cell. Biol. 2006; 26: 3295-3307
        • Newby A.C.
        • Zaltsman A.B.
        Molecular mechanisms in intimal hyperplasia.
        J. Pathol. 2000; 190: 300-309
        • Ji Y.
        • Weng Z.
        • Fish P.
        • Goyal N.
        • Luo M.
        • Myears S.P.
        • Strawn T.L.
        • Chandrasekar B.
        • Wu J.
        • Fay W.P.
        Pharmacological targeting of plasminogen activator inhibitor-1 decreases vascular smooth muscle cell migration and neointima formation.
        Arterioscler. Thromb. Vasc. Biol. 2016; 36: 2167-2175
        • Czekay R.P.
        • Wilkins-Port C.E.
        • Higgins S.P.
        • Freytag J.
        • Overstreet J.M.
        • Klein R.M.
        • Higgins C.E.
        • Samarakoon R.
        • Higgins P.J.
        PAI-1: an integrator of cell signaling and migration.
        Int. J. Cell Biol. 2011; 2011562481
        • Degryse B.
        • Neels J.G.
        • Czekay R.P.
        • Aertgeerts K.
        • Kamikubo Y.
        • Loskutoff D.J.
        The low density lipoprotein receptor-related protein is a motogenic receptor for plasminogen activator inhibitor-1.
        J. Biol. Chem. 2004; 279: 22595-22604
        • Kozlova N.
        • Jensen J.K.
        • Chi T.F.
        • Samoylenko A.
        • Kietzmann T.
        PAI-1 modulates cell migration in a LRP1-dependent manner via beta-catenin and ERK1/2.
        Thromb. Haemost. 2015; 113: 988-998
        • Mimuro J.
        • Loskutoff D.J.
        Purification of a protein from bovine plasma that binds to type 1 plasminogen activator inhibitor and prevents its interaction with extracellular matrix. Evidence that the protein is vitronectin.
        J. Biol. Chem. 1989; 264: 936-939
        • Thogersen A.M.
        • Jansson J.H.
        • Boman K.
        • Nilsson T.K.
        • Weinehall L.
        • Huhtasaari F.
        • Hallmans G.
        High plasminogen activator inhibitor and tissue plasminogen activator levels in plasma precede a first acute myocardial infarction in both men and women: evidence for the fibrinolytic system as an independent primary risk factor.
        Circulation. 1998; 98: 2241-2247
        • Johansson L.
        • Jansson J.H.
        • Boman K.
        • Nilsson T.K.
        • Stegmayr B.
        • Hallmans G.
        Tissue plasminogen activator, plasminogen activator inhibitor-1, and tissue plasminogen activator/plasminogen activator inhibitor-1 complex as risk factors for the development of a first stroke.
        Stroke. 2000; 31: 26-32
        • Meigs J.B.
        • O'Donnell C.J.
        • Tofler G.H.
        • Benjamin E.J.
        • Fox C.S.
        • Lipinska I.
        • Nathan D.M.
        • Sullivan L.M.
        • D'Agostino R.B.
        • Wilson P.W.
        Hemostatic markers of endothelial dysfunction and risk of incident type 2 diabetes: the Framingham Offspring Study.
        Diabetes. 2006; 55: 530-537
        • Trost S.
        • Pratley R.E.
        • Sobel B.E.
        Impaired fibrinolysis and risk for cardiovascular disease in the metabolic syndrome and type 2 diabetes.
        Curr. Diab. Rep. 2006; 6: 47-54
        • Sobel B.E.
        • Taatjes D.J.
        • Schneider D.J.
        Intramural plasminogen activator inhibitor type-1 and coronary atherosclerosis.
        Arterioscler. Thromb. Vasc. Biol. 2003; 23: 1979-1989
        • Brazionis L.
        • Rowley K.
        • Jenkins A.
        • Itsiopoulos C.
        • O'Dea K.
        Plasminogen activator inhibitor-1 activity in type 2 diabetes: a different relationship with coronary heart disease and diabetic retinopathy.
        Arterioscler. Thromb. Vasc. Biol. 2008; 28: 786-791
        • Scheer F.A.
        • Shea S.A.
        Human circadian system causes a morning peak in prothrombotic plasminogen activator inhibitor-1 (PAI-1) independent of the sleep/wake cycle.
        Blood. 2014; 123: 590-593
        • Simpson A.J.
        • Gray R.S.
        • Moore N.R.
        • Booth N.A.
        The effects of chronic smoking on the fibrinolytic potential of plasma and platelets.
        Br. J. Haematol. 1997; 97: 208-213
        • Cooper J.A.
        • Nagelkirk P.R.
        • Coughlin A.M.
        • Pivarnik J.M.
        • Womack C.J.
        Temporal changes in tPA and PAI-1 after maximal exercise.
        Med. Sci. Sports Exerc. 2004; 36: 1884-1887
        • Byrne C.D.
        • Wareham N.J.
        • Martensz N.D.
        • Humphries S.E.
        • Metcalfe J.C.
        • Grainger D.J.
        Increased PAI activity and PAI-1 antigen occurring with an oral fat load: associations with PAI-1 genotype and plasma active TGF-beta levels.
        Atherosclerosis. 1998; 140: 45-53
        • Declerck P.J.
        • Alessi M.C.
        • Verstreken M.
        • Kruithof E.K.
        • Juhan-Vague I.
        • Collen D.
        Measurement of plasminogen activator inhibitor 1 in biologic fluids with a murine monoclonal antibody-based enzyme-linked immunosorbent assay.
        Blood. 1988; 71: 220-225
        • Gils A.
        • Declerck P.J.
        Modulation of plasminogen activator inhibitor 1 by Triton X-100--identification of two consecutive conformational transitions.
        Thromb. Haemost. 1998; 80: 286-291
        • Andreasen P.A.
        • Egelund R.
        • Jensen S.
        • Rodenburg K.W.
        Solvent effects on activity and conformation of plasminogen activator inhibitor-1.
        Thromb. Haemost. 1999; 81: 407-414
        • Hekman C.M.
        • Loskutoff D.J.
        Endothelial cells produce a latent inhibitor of plasminogen activators that can be activated by denaturants.
        J. Biol. Chem. 1985; 260: 11581-11587
        • Pieters M.
        • Barnard S.A.
        • Loots D.T.
        • Rijken D.C.
        The effects of residual platelets in plasma on plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays.
        PLoS One. 2017; 12e0171271
        • Sidelmann J.
        The influence of centrifugation load on platelet number and PAI-1 antigen concentration in human plasma.
        Fibrinolysis. 1994; 8 (: 148-149
        • Vaughan D.E.
        PAI-1 antagonists: the promise and the peril.
        Trans. Am. Clin. Climatol. Assoc. 2011; 122: 312-325
        • Juhan-Vague I.
        • Alessi M.C.
        PAI-1, obesity, insulin resistance and risk of cardiovascular events.
        Thromb. Haemost. 1997; 78: 656-660
        • Bastelica D.
        • Morange P.
        • Berthet B.
        • Borghi H.
        • Lacroix O.
        • Grino M.
        • Juhan-Vague I.
        • Alessi M.C.
        Stromal cells are the main plasminogen activator inhibitor-1-producing cells in human fat: evidence of differences between visceral and subcutaneous deposits.
        Arterioscler. Thromb. Vasc. Biol. 2002; 22: 173-178
        • Schafer K.
        • Fujisawa K.
        • Konstantinides S.
        • Loskutoff D.J.
        Disruption of the plasminogen activator inhibitor 1 gene reduces the adiposity and improves the metabolic profile of genetically obese and diabetic ob/ob mice.
        FASEB J. 2001; 15: 1840-1842
        • Ma L.J.
        • Mao S.L.
        • Taylor K.L.
        • Kanjanabuch T.
        • Guan Y.
        • Zhang Y.
        • Brown N.J.
        • Swift L.L.
        • McGuinness O.P.
        • Wasserman D.H.
        • et al.
        Prevention of obesity and insulin resistance in mice lacking plasminogen activator inhibitor 1.
        Diabetes. 2004; 53: 336-346
        • D'Agostino Jr., R.B.
        • Hamman R.F.
        • Karter A.J.
        • Mykkanen L.
        • Wagenknecht L.E.
        • Haffner S.M.
        • Insulin Resistance Atherosclerosis Study
        Cardiovascular disease risk factors predict the development of type 2 diabetes: the insulin resistance atherosclerosis study.
        Diabetes Care. 2004; 27: 2234-2240
        • Nordt T.K.
        • Schneider D.J.
        • Sobel B.E.
        Augmentation of the synthesis of plasminogen activator inhibitor type-1 by precursors of insulin. A potential risk factor for vascular disease.
        Circulation. 1994; 89: 321-330
        • Eitzman D.T.
        • Westrick R.J.
        • Xu Z.
        • Tyson J.
        • Ginsburg D.
        Plasminogen activator inhibitor-1 deficiency protects against atherosclerosis progression in the mouse carotid artery.
        Blood. 2000; 96: 4212-4215
        • Bini A.
        • Fenoglio Jr., J.J.
        • Mesa-Tejada R.
        • Kudryk B.
        • Kaplan K.L.
        Identification and distribution of fibrinogen, fibrin, and fibrin(ogen) degradation products in atherosclerosis. Use of monoclonal antibodies.
        Arteriosclerosis. 1989; 9: 109-121
        • Naito M.
        • Funaki C.
        • Hayashi T.
        • Yamada K.
        • Asai K.
        • Yoshimine N.
        • Kuzuya F.
        Substrate-bound fibrinogen, fibrin and other cell attachment-promoting proteins as a scaffold for cultured vascular smooth muscle cells.
        Atherosclerosis. 1992; 96: 227-234
        • Ploplis V.A.
        Effects of altered plasminogen activator inhibitor-1 expression on cardiovascular disease.
        Curr. Drug Targets. 2011; 12: 1782-1789
        • Eren M.
        • Painter C.A.
        • Atkinson J.B.
        • Declerck P.J.
        • Vaughan D.E.
        Age-dependent spontaneous coronary arterial thrombosis in transgenic mice that express a stable form of human plasminogen activator inhibitor-1.
        Circulation. 2002; 106: 491-496
        • Battes L.C.
        • Akkerhuis K.M.
        • Cheng J.M.
        • Garcia-Garcia H.M.
        • Oemrawsingh R.M.
        • de Boer S.P.M.
        • Regar E.
        • van Geuns R.J.
        • Serruys P.W.
        • Boersma E.
        • et al.
        Circulating acute phase proteins in relation to extent and composition of coronary atherosclerosis and cardiovascular outcome: results from the ATHEROREMO-IVUS study.
        Int. J. Cardiol. 2014; 177: 847-853
        • Pourdjabbar A.
        • Hibbert B.
        • Simard T.
        • Ma X.
        • O'Brien E.R.
        Pathogenesis of neointima formation following vascular injury, cardiovascular & haematological disorders - drug targets.
        Cardiovasc. Hematol. Disord. Drug Targets. 2011; 11: 30-39
        • Cassese S.
        • Byrne R.A.
        • Tada T.
        • Pinieck S.
        • Joner M.
        • Ibrahim T.
        • King L.A.
        • Fusaro M.
        • Laugwitz K.L.
        • Kastrati A.
        Incidence and predictors of restenosis after coronary stenting in 10 004 patients with surveillance angiography.
        Heart. 2014; 100: 153-159
        • Magalhaes M.A.
        • Minha S.
        • Chen F.
        • Torguson R.
        • Omar A.F.
        • Loh J.P.
        • Escarcega R.O.
        • Lipinski M.J.
        • Baker N.C.
        • Kitabata H.
        • et al.
        Clinical presentation and outcomes of coronary in-stent restenosis across 3-stent generations.
        Circ. Cardiovasc. Interv. 2014; 7: 768-776
        • Katsaros K.M.
        • Speidl W.S.
        • Kastl S.P.
        • Zorn G.
        • Huber K.
        • Maurer G.
        • Glogar D.
        • Wojta J.
        • Christ G.
        Plasminogen activator inhibitor-1 predicts coronary in-stent restenosis of drug-eluting stents.
        J. Thromb. Haemost. 2008; 6: 508-513
        • Byrne R.A.
        • Joner M.
        • Kastrati A.
        Stent thrombosis and restenosis: what have we learned and where are we going? The Andreas Gruntzig Lecture ESC 2014.
        Eur. Heart J. 2015; 36: 3320-3331
        • Ellis S.G.
        • Kereiakes D.J.
        • Metzger D.C.
        • Caputo R.P.
        • Rizik D.G.
        • Teirstein P.S.
        • Litt M.R.
        • Kini A.
        • Kabour A.
        • Marx S.O.
        • et al.
        Everolimus-eluting bioresorbable scaffolds for coronary artery disease.
        N. Engl. J. Med. 2015; 373: 1905-1915
        • Nguyen K.T.
        • Shaikh N.
        • Shukla K.P.
        • Su S.H.
        • Eberhart R.C.
        • Tang L.
        Molecular responses of vascular smooth muscle cells and phagocytes to curcumin-eluting bioresorbable stent materials.
        Biomaterials. 2004; 25: 5333-5346
        • Kandzari D.E.
        • Leon M.B.
        • Popma J.J.
        • Fitzgerald P.J.
        • O'Shaughnessy C.
        • Ball M.W.
        • Turco M.
        • Applegate R.J.
        • Gurbel P.A.
        • Midei M.G.
        • et al.
        Comparison of zotarolimus-eluting and sirolimus-eluting stents in patients with native coronary artery disease. A randomized controlled trial.
        J. Am. Coll. Cardiol. 2006; 48: 2440-2447
        • Di Santo P.
        • Simard T.
        • Ramirez F.D.
        • Pourdjabbar A.
        • Harnett D.T.
        • Singh K.
        • Moreland R.
        • Chong A.Y.
        • Dick A.
        • Labinaz M.
        • et al.
        Does stent strut design impact clinical outcomes: comparative safety and efficacy of endeavor resolute versus resolute integrity zotarolimus-eluting stents.
        Clin. Invest. Med. 2015; 38: E296-304
        • Giles K.
        • Hibbert B.
        • Drzymala L.
        • Armstrong M.
        • So D.
        • Le May M.R.
        • Glover C.
        Three year clinical outcomes with zotarolimus (Endeavor) drug-eluting stents in an unrestricted contemporary practice.
        Int. J. Cardiol. 2013; 168: 595-596
        • Schafer K.
        • Schroeter M.R.
        • Dellas C.
        • Puls M.
        • Nitsche M.
        • Weiss E.
        • Hasenfuss G.
        • Konstantinides S.V.
        Plasminogen activator inhibitor-1 from bone marrow-derived cells suppresses neointimal formation after vascular injury in mice.
        Arterioscler. Thromb. Vasc. Biol. 2006; 26: 1254-1259
        • Strauss B.H.
        • Lau H.K.
        • Bowman K.A.
        • Sparkes J.
        • Chisholm R.J.
        • Garvey M.B.
        • Fenkell L.L.
        • Natarajan M.K.
        • Singh I.
        • Teitel J.M.
        Plasma urokinase antigen and plasminogen activator inhibitor-1 antigen levels predict angiographic coronary restenosis.
        Circulation. 1999; 100: 1616-1622
        • Prisco D.
        • Fedi S.
        • Antonucci E.
        • Capanni M.
        • Chiarugi L.
        • Chioccioli M.
        • Falai M.
        • Giglioli C.
        • Abbate R.
        • Gensini G.F.
        Postprocedural PAI-1 activity is a risk marker of subsequent clinical restenosis in patients both with and without stent implantation after elective balloon PTCA.
        Thromb. Res. 2001; 104: 181-186
        • Leon M.B.
        • Baim D.S.
        • Popma J.J.
        • Gordon P.C.
        • Cutlip D.E.
        • Ho K.K.
        • Giambartolomei A.
        • Diver D.J.
        • Lasorda D.M.
        • Williams D.O.
        • et al.
        A clinical trial comparing three antithrombotic-drug regimens after coronary-artery stenting. Stent Anticoagulation Restenosis Study Investigators.
        N. Engl. J. Med. 1998; 339: 1665-1671
        • Schömig A.
        • Neumann F.-J.
        • Kastrati A.
        • Schühlen H.
        • Blasini R.
        • Hadamitzky M.
        • Walter H.
        • Zitzmann-Roth E.-M.
        • Richardt G.
        • Alt E.
        • et al.
        A randomized comparison of antiplatelet and anticoagulant therapy after the placement of coronary-artery stents.
        N. Engl. J. Med. 1996; 334: 1084-1089
        • Muldowney 3rd, J.A.
        • Stringham J.R.
        • Levy S.E.
        • Gleaves L.A.
        • Eren M.
        • Piana R.N.
        • Vaughan D.E.
        Antiproliferative agents alter vascular plasminogen activator inhibitor-1 expression: a potential prothrombotic mechanism of drug-eluting stents.
        Arterioscler. Thromb. Vasc. Biol. 2007; 27: 400-406
        • Biemond B.J.
        • Levi M.
        • Coronel R.
        • Janse M.J.
        • ten Cate J.W.
        • Pannekoek H.
        Thrombolysis and reocclusion in experimental jugular vein and coronary artery thrombosis. Effects of a plasminogen activator inhibitor type 1-neutralizing monoclonal antibody.
        Circulation. 1995; 91: 1175-1181
        • Elokdah H.
        • Abou-Gharbia M.
        • Hennan J.K.
        • McFarlane G.
        • Mugford C.P.
        • Krishnamurthy G.
        • Crandall D.L.
        Tiplaxtinin, a novel, orally efficacious inhibitor of plasminogen activator inhibitor-1: design, synthesis, and preclinical characterization.
        J. Med. Chem. 2004; 47: 3491-3494
        • Pautus S.
        • Alami M.
        • Adam F.
        • Bernadat G.
        • Lawrence D.A.
        • De Carvalho A.
        • Ferry G.
        • Rupin A.
        • Hamze A.
        • Champy P.
        • et al.
        Characterization of the Annonaceous acetogenin, annonacinone, a natural product inhibitor of plasminogen activator inhibitor-1.
        Sci. Rep. 2016; 636462
        • Fortenberry Y.M.
        Plasminogen activator inhibitor-1 inhibitors: a patent review (2006–present).
        Expert Opin. Ther. Pat. 2013; 23: 801-815
        • Simone T.M.
        • Higgins S.P.
        • Higgins C.E.
        • Lennartz M.R.
        • Higgins P.J.
        Chemical antagonists of plasminogen activator inhibitor-1: mechanisms of action and therapeutic potential in vascular disease.
        J. Mol. Genet. Med. 2014; 8
        • Hennan J.K.
        • Elokdah H.
        • Leal M.
        • Ji A.
        • Friedrichs G.S.
        • Morgan G.A.
        • Swillo R.E.
        • Antrilli T.M.
        • Hreha A.
        • Crandall D.L.
        Evaluation of PAI-039 [{1-benzyl-5-[4-(trifluoromethoxy)phenyl]-1H-indol-3-yl}(oxo)acetic acid], a novel plasminogen activator inhibitor-1 inhibitor, in a canine model of coronary artery thrombosis.
        J. Pharmacol. Exp. Ther. 2005; 314: 710-716
        • Gorlatova N.V.
        • Cale J.M.
        • Elokdah H.
        • Li D.
        • Fan K.
        • Warnock M.
        • Crandall D.L.
        • Lawrence D.A.
        Mechanism of inactivation of plasminogen activator inhibitor-1 by a small molecule inhibitor.
        J. Biol. Chem. 2007; 282: 9288-9296
        • Hennan J.K.
        • Morgan G.A.
        • Swillo R.E.
        • Antrilli T.M.
        • Mugford C.
        • Vlasuk G.P.
        • Gardell S.J.
        • Crandall D.L.
        Effect of tiplaxtinin (PAI-039), an orally bioavailable PAI-1 antagonist, in a rat model of thrombosis.
        J. Thromb. Haemost. 2008; 6: 1558-1564