Advertisement
Full Length Article| Volume 136, ISSUE 2, P456-464, August 2015

Cilostazol inhibits HMGB1 release in LPS-activated RAW 264.7 cells and increases the survival of septic mice

  • Ki Churl Chang
    Correspondence
    Department of Pharmacology, School of Medicine Gyeongsang National University and Institute of Health Sciences, Jinju 660-290, Korea.
    Affiliations
    Department of Pharmacology, School of Medicine Gyeongsang National University and Institute of Health Sciences, Jinju 660-751, Korea
    Search for articles by this author

      Highlights

      • Cilostazol increased p-AMPK- and p-p38 that followed by HO-1 induction.
      • Cilostazol reduced HMGB1 and PAI-1 in septic mice in a ZnPPIX-sensitive manner.
      • Cilostazol increased the survival of endotoxemic mice.

      Abstract

      Introduction

      Inflammation and coagulation play important roles in the pathogenesis of sepsis. Anticoagulants with anti-inflammatory action draw attention as therapeutic agent in sepsis.

      Objective

      Whether cilostazol (6-[4-(1-cyclohexyl-1H-tetrazol-5-yl) butoxy]-3,4-dihydro-2-(1H)-quinolinone), anticoagulant, protects mice against sepsis and underlying mechanism(s) were investigated.

      Methods

      Induction of heme oxygenase (HO)-1 protein, phosphorylation of 5' adenosine monophosphate-activated protein kinase (AMPK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) luciferase activity, and release of high mobility group box 1 (HMGB1) were analyzed using signal inhibitors and transfection techniques. Survival and organ damage were compared in septic mice with and without cilostazol.

      Results

      In RAW264.7 cells, cilostazol increased phosphorylation of AMPK which was followed by HO-1 induction. Lipopolysaccharide (LPS)-activated HMGB1 release was reduced by cilostazol which was reversed by both SB203580 and silencing of HO-1 or AMPK RNA. Interestingly, silencing AMPK reduced HO-1 expression, whereas silencing HO-1 did not affect p-AMPK by cilostazol. Both compound C and zinc protoporphyrin IX (ZnPPIX) antagonized inhibitory effect of HMGB1 by cilostazol. Cilostazol inhibited NF-κB luciferase activity which was antagonized by SB203580. Finally, the administration of cilostazol increased the survival of endotoxemic mice but failed to do so when co-treated with rHMGB1. Cilostazol reduced circulating HMGB1, plasminogen activator inhibitor-1 (PAI-1) levels, organ damages and protein expression of PAI-1 in lung tissues of CLP-septic mice, which were antagonized by ZnPPIX.

      Conclusion

      These findings suggest that HMGB1 can be a target molecule of cilostazol by 1) AMPK activation, and 2) induction of HO-1 by p38 MAPK and AMPK. Therefore, cilostazol may be useful for treatment of sepsis.

      Graphical Abstract

      Abbreviations:

      AMPK (5' adenosine monophosphate-activated protein kinase), ATCC (American Type Culture Collection), CO (Carbon monoxide), CLP (Cecal ligation and puncture), Cilostazol ((6-[4-(1-cyclohexyl-1H-tetrazol-5-yl) butoxy]-3,4-dihydro-2-(1H)-quinolinone)), DMEM (Dulbecco’s modified Eagle’s medium), ECs (Endothelial cells), ECL (Enhanced chemiluminescence), FBS (Fetal bovine serum), HO-1 (Heme oxygenase-1), HMGB1 (High-mobility group box 1), IFN-γ (Interferon-gamma), IL-1 (Interleukin-1), LPS (Lipopolysaccharide), NF-κB (Nuclear factor kappa-light-chain-enhancer of activated B cells), rHMGB1 (Recombinant human HMGB1), ZnPPIX (Zinc protoporphyrin IX)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Thrombosis Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Oberholzer A.
        • Oberholzer C.
        • Moldawer L.L.
        Sepsis syndromes: understanding the role of innate and acquired immunity.
        Shock. 2001; 16: 83-96
        • Moore L.J.
        • McKinley B.A.
        • Turner K.L.
        • Todd S.R.
        • Sucher J.F.
        • Valdivia A.
        • Sailors R.M.
        • Kao L.S.
        • Moore F.A.
        The epidemiology of sepsis in general surgery patients.
        J. Trauma. 2011; 70: 672-680
        • Dinarello C.A.
        • Thompson R.C.
        Blocking IL-1: interleukin 1 receptor antagonist in vivo and in vitro.
        Immunol. Today. 1991; 12: 404-410
        • Heinzel F.P.
        The role of IFN-gamma in the pathology of experimental endotoxemia.
        J. Immunol. 1990; 145: 2920-2924
        • Dinapoli M.R.
        • Calderon C.L.
        • Lopez D.M.
        The altered tumoricidal capacity of macrophages isolated from tumor-bearing mice is related to reduce expression of the inducible nitric oxide synthase gene.
        J. Exp. Med. 1996; 183: 1323-1329
        • Tyagi A.
        • Sethi A.K.
        • Girotra G.
        • Mohta M.
        The microcirculation in sepsis.
        Indian J. Anaesth. 2009; 53: 281-293
        • Wang H.
        • Bloom O.
        • Zhang M.
        • Vishnubhakat J.M.
        • Ombrellino M.
        • Che J.
        • Frazier A.
        • Yang H.
        • Ivanova S.
        • Borovikova L.
        • Manogue K.R.
        • Faist E.
        • Abraham E.
        • Andersson J.
        • Andersson U.
        • Molina P.E.
        • Abumrad N.N.
        • Sama A.
        • Tracey K.J.
        HMG-1 as a late mediator of endotoxin lethality in mice.
        Science. 1999; 285: 248-251
        • Wolfson R.K.
        • Chiang E.T.
        • Garcia J.G.
        HMGB1 induces human lung endothelial cell cytoskeletal rearrangement and barrier disruption.
        Microvasc. Res. 2011; 81: 189-197
        • Iba T.
        • Gando S.
        • Thachil J.
        Anticoagulant therapy for sepsis-associated disseminated intravascular coagulation: the view from Japan.
        J. Thromb. Haemost. 2014; 12: 1010-1019
        • Hatada T.
        • Wada H.
        • Nobori T.
        • Okabayashi K.
        • Maruyama K.
        • Abe Y.
        • Uemoto S.
        • Yamada S.
        • Maruyama I.
        Plasma concentrations and importance of High Mobility Group Box protein in the prognosis of organ failure in patients with disseminated intravascular coagulation.
        Thromb. Haemost. 2005; 94: 975-979
        • Tsoyi K.
        • Lee T.Y.
        • Lee Y.S.
        • Kim H.J.
        • Seo H.G.
        • Lee J.H.
        • Chang K.C.
        Heme-oxygenase-1 induction and carbon monoxide-releasing molecule inhibit lipopolysaccharide (LPS)-induced high-mobility group box 1 release in vitro and improve survival of mice in LPS- and cecal ligation and puncture-induced sepsis model in vivo.
        Mol. Pharmacol. 2009; 76: 173-182
        • Takamiya R.
        • Hung C.C.
        • Hall S.R.
        • Fukunaga K.
        • Nagaishi T.
        • Maeno T.
        • Owen C.
        • Macias A.A.
        • Fredenburgh L.E.
        • Ishizaka A.
        • Blumberg R.S.
        • Baron R.M.
        • Perrella M.A.
        High-mobility group box 1 contributes to lethality of endotoxemia in heme oxygenase-1-deficient mice.
        Am. J. Respir. Cell Mol. Biol. 2009; 41: 129-135
        • Wang H.
        • Yang H.
        • Czura C.J.
        • Sama A.E.
        • Tracey K.J.
        HMGB1 as a late mediator of lethal systemic inflammation.
        Am. J. Respir. Crit. Care Med. 2001; 164: 1768-1773
        • Alam J.
        • Stewart D.
        • Touchard C.
        • Boinapally S.
        • Choi A.M.
        • Cook J.L.
        Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene.
        J. Biol. Chem. 1999; 274: 26071-26078
        • Jang H.J.
        • Tsoyi K.
        • Kim Y.M.
        • Park E.J.
        • Park S.W.
        • Kim H.J.
        • Lee J.H.
        • Chang K.C.
        (S)-1-alpha-naphthylmethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (CKD712), promotes wound closure by producing VEGF through HO-1 induction in human dermal fibroblasts and mouse skin.
        Br. J. Pharmacol. 2013; 168: 1485-1496
        • Jang H.J.
        • Kim Y.M.
        • Tsoyi K.
        • Park E.J.
        • Lee Y.S.
        • Kim H.J.
        • Lee J.H.
        • Joe Y.
        • Chung H.T.
        • Chang K.C.
        Ethyl pyruvate induces heme oxygenase-1 through p38 mitogen-activated protein kinase activation by depletion of glutathione in RAW 264.7 cells and improves survival in septic animals.
        Antioxid. Redox Signal. 2012; 17: 878-889
        • Tsoyi K.
        • Jang H.J.
        • Nizamutdinova I.T.
        • Kim Y.M.
        • Lee Y.S.
        • Kim H.J.
        • Seo H.G.
        • Lee J.H.
        • Chang K.C.
        Metformin inhibits HMGB1 release in LPS-treated RAW 264.7 cells and increases survival rate of endotoxaemic mice.
        Br. J. Pharmacol. 2011; 162: 1498-1508
        • Colucci M.
        • Paramo J.A.
        • Collen D.
        Generation in plasma of a fast-acting inhibitor of plasminogen activator in response to endotoxin stimulation.
        J. Clin. Investig. 1985; 75: 818-824
        • Park W.S.
        • Jung W.K.
        • Lee D.Y.
        • Moon C.
        • Yea S.S.
        • Park S.G.
        • Seo S.K.
        • Park C.
        • Choi Y.H.
        • Kim G.Y.
        • Choi J.S.
        • Choi I.W.
        Cilostazol protects mice against endotoxin shock and attenuates LPS-induced cytokine expression in RAW 264.7 macrophages via MAPK inhibition and NF-kappaB inactivation: not involved in cAMP mechanisms.
        Int. Immunopharmacol. 2010; 10: 1077-1085
        • Pullikotil P.
        • Chen H.
        • Muniyappa R.
        • Greenberg C.C.
        • Yang S.
        • Reiter C.E.
        • Lee J.W.
        • Chung J.H.
        • Quon M.J.
        Epigallocatechin gallate induces expression of heme oxygenase-1 in endothelial cells via p38 MAPK and Nrf-2 that suppresses proinflammatory actions of TNF-alpha.
        J. Nutr. Biochem. 2012; 23: 1134-1145
        • Liu X.M.
        • Peyton K.J.
        • Shebib A.R.
        • Wang H.
        • Korthuis R.J.
        • Durante W.
        Activation of AMPK stimulates heme oxygenase-1 gene expression and human endothelial cell survival.
        Am. J. Physiol. Heart Circ. Physiol. 2011; 300: H84-H93
        • Byun S.J.
        • Son Y.
        • Hwan Cho B.
        • Chung H.T.
        • Pae H.O.
        beta-Lapachone, a substrate of NAD(P)H:quinone oxidoreductase, induces anti-inflammatory heme oxygenase-1 via AMP-activated protein kinase activation in RAW264.7 macrophages.
        J. Clin. Biochem. Nutr. 2013; 52: 106-111
        • Mo C.
        • Wang L.
        • Zhang J.
        • Numazawa S.
        • Tang H.
        • Tang X.
        • Han X.
        • Li J.
        • Yang M.
        • Wang Z.
        • Wei D.
        • Xiao H.
        The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice.
        Antioxid. Redox Signal. 2014; 20: 574-588
        • Ha Y.M.
        • Kim M.Y.
        • Park M.K.
        • Lee Y.S.
        • Kim Y.M.
        • Kim H.J.
        • Lee J.H.
        • Chang K.C.
        Higenamine reduces HMGB1 during hypoxia-induced brain injury by induction of heme oxygenase-1 through PI3K/Akt/Nrf-2 signal pathways.
        Apoptosis. 2012; 17: 463-474
        • Kew R.R.
        • Penzo M.
        • Habiel D.M.
        • Marcu K.B.
        The IKKalpha-dependent NF-kappaB p52/RelB noncanonical pathway is essential to sustain a CXCL12 autocrine loop in cells migrating in response to HMGB1.
        J. Immunol. 2012; 188: 2380-2386
        • Gentile L.F.
        • Moldawer L.L.
        HMGB1 as a therapeutic target for sepsis: it's all in the timing!.
        Expert Opin. Ther. Targets. 2014; 18: 243-245
        • Gong G.
        • Xiang L.
        • Yuan L.
        • Hu L.
        • Wu W.
        • Cai L.
        • Yin L.
        • Dong H.
        Protective effect of glycyrrhizin, a direct HMGB1 inhibitor, on focal cerebral ischemia/reperfusion-induced inflammation, oxidative stress, and apoptosis in rats.
        PLoS One. 2014; 9: e89450
        • Jia L.
        • Clear A.
        • Liu F.T.
        • Matthews J.
        • Uddin N.
        • McCarthy A.
        • Hoxha E.
        • Durance C.
        • Iqbal S.
        • Gribben J.G.
        Extracellular HMGB1 promotes differentiation of nurse-like cells in chronic lymphocytic leukemia.
        Blood. 2014; 123: 1709-1719
        • Qin Y.
        • Chen Y.
        • Wang W.
        • Wang Z.
        • Tang G.
        • Zhang P.
        • He Z.
        • Liu Y.
        • Dai S.M.
        • Shen Q.
        HMGB1-LPS complex promotes transformation of osteoarthritis synovial fibroblasts to a rheumatoid arthritis synovial fibroblast-like phenotype.
        Cell Death Dis. 2014; 5: e1077
        • Andersson U.
        • Tracey K.J.
        HMGB1 is a therapeutic target for sterile inflammation and infection.
        Annu. Rev. Immunol. 2011; 29: 139-162
        • Rouhiainen A.
        • Imai S.
        • Rauvala H.
        • Parkkinen J.
        Occurrence of amphoterin (HMG1) as an endogenous protein of human platelets that is exported to the cell surface upon platelet activation.
        Thromb. Haemost. 2000; 84: 1087-1094
        • Al-Huseini L.M.
        • Aw Yeang H.X.
        • Hamdam J.M.
        • Sethu S.
        • Alhumeed N.
        • Wong W.
        • Sathish J.G.
        Heme Oxygenase-1 Regulates Dendritic Cell Function through Modulation of p38 MAPK-CREB/ATF1 Signaling.
        J. Biol. Chem. 2014; 289: 16442-16451
        • Park S.Y.
        • Kim J.H.
        • Lee S.J.
        • Kim Y.
        Involvement of PKA and HO-1 signaling in anti-inflammatory effects of surfactin in BV-2 microglial cells.
        Toxicol. Appl. Pharmacol. 2013; 268: 68-78
        • Kim H.J.
        • Tsoy I.
        • Park M.K.
        • Lee Y.S.
        • Lee J.H.
        • Seo H.G.
        • Chang K.C.
        Iron released by sodium nitroprusside contributes to heme oxygenase-1 induction via the cAMP-protein kinase A-mitogen-activated protein kinase pathway in RAW 264.7 cells.
        Mol. Pharmacol. 2006; 69: 1633-1640
        • Park M.K.
        • Kang Y.J.
        • Ha Y.M.
        • Jeong J.J.
        • Kim H.J.
        • Seo H.G.
        • Lee J.H.
        • Chang K.C.
        EP2 receptor activation by prostaglandin E2 leads to induction of HO-1 via PKA and PI3K pathways in C6 cells.
        Biochem. Biophys. Res. Commun. 2009; 379: 1043-1047
        • Durante W.
        • Christodoulides N.
        • Cheng K.
        • Peyton K.J.
        • Sunahara R.K.
        • Schafer A.I.
        cAMP induces heme oxygenase-1 gene expression and carbon monoxide production in vascular smooth muscle.
        Am. J. Physiol. 1997; 273: H317-H323
        • Paramo J.A.
        • Fernandez Diaz F.J.
        • Rocha E.
        Plasminogen activator inhibitor activity in bacterial infection.
        Thromb. Haemost. 1988; 59: 451-454
        • Lorente L.
        • Martin M.M.
        • Borreguero-Leon J.M.
        • Sole-Violan J.
        • Ferreres J.
        • Labarta L.
        • Diaz C.
        • Jimenez A.
        • Paramo J.A.
        Sustained high plasma plasminogen activator inhibitor-1 levels are associated with severity and mortality in septic patients.
        Thromb. Res. 2014; 134: 182-186
        • Matsumoto H.
        • Ishikawa K.
        • Itabe H.
        • Maruyama Y.
        Carbon monoxide and bilirubin from heme oxygenase-1 suppresses reactive oxygen species generation and plasminogen activator inhibitor-1 induction.
        Mol. Cell. Biochem. 2006; 291: 21-28