Genetic score based on high-risk genetic polymorphisms and early onset of ischemic heart disease in an Italian cohort of ischemic patients

      Abstract

      Several single-nucleotide polymorphisms (SNPs) have been recognized as associated with ischemic heart disease (IHD) although the optimal set of risk genotypes has not be identified. This study aimed to examine whether identified high-risk SNPs are associated with early onset of IHD. In the GENOCOR study, 44 high-risk SNPs were genotyped in 114 patients with early onset of IHD (46.2 ± 5.1 years) and 384 patients with late onset of IHD (60.7 ± 5.9 years). The associations between individual SNPs and early onset IHD were assessed. A multilocus genetic risk score (GRS) for each associated risk genetic markers was constructed by summing the number of risk alleles. The SNPs significantly associated with IHD were: -482C > T of Apolipoprotein C III gene (ApoC3, p = 0.02); 1171 5A > 6A of Matrix metalloproteinase 3 stromelisine I gene (p = 0.01); G98T of Selectin E gene (p = 0.05); C/G of 9p21.3 locus (p = 0.01). Likelihood ratio test showed a strong interaction for increasing risk of early IHD between the presence of ApoC3 and 9p21.3 locus with hypertriglyceridemia (p = 0.0008, 0.0011) as well as between 9p21.3 locus and smoking (p = 0.0010) after correction for multiple testing. The OR for premature IHD for GRS unit was 1.3 (95% CI 1.1-1.6, p = 0.001). Patients in the top tertile of GRS were estimated to have a 3.2-fold (95% CI 1.5-6.8; p = 0.001) increased risk of early IHD compared with those in the bottom tertile. The results show that currently identified high-risk SNPs confer an additive biomarker for cardiovascular events. GRS may provide important incremental information on the genetic component of IHD.

      Keywords

      To read this article in full you will need to make a payment
      Subscribe to Thrombosis Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Yusuf S.
        • Hawken S.
        • Ounpuu S.
        • Dans T.
        • Avezum A.
        • Lanas F.
        • et al.
        Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study.
        Lancet. 2004; 364: 937-952
        • Kathiresan S.
        • Willer C.J.
        • Peloso G.M.
        • Demissie S.
        • Musunuru K.
        • Schadt E.E.
        • et al.
        Common variants at 30 loci contribute to polygenic dyslipidemia.
        Nat Genet. 2009; 41: 56-65
        • Hauser E.R.
        • Mooser V.
        • Crossman D.C.
        • Haines J.L.
        • Jones C.H.
        • Winkelmann B.R.
        • et al.
        Design of the Genetics of Early Onset Cardiovascular Disease (GENECARD) study.
        Am Heart J. 2003; 145: 602-613
        • Dandona S.
        • Stewart A.F.
        • Chen L.
        • Williams K.
        • So D.
        • O'Brien E.
        • et al.
        Gene dosage of the common variant 9p21 predicts severity of coronary artery disease.
        J Am Coll Cardiol. 2009; 56: 479-486
        • Hirschhorn J.N.
        Genome wide association studies–illuminating biologic pathways.
        N Engl J Med. 2009; 360: 1699-1701
        • Anderson J.L.
        • Horne B.D.
        • Camp N.J.
        • Muhlestein J.B.
        • Hopkins P.N.
        • Cannon-Albright L.A.
        • et al.
        Joint effects of common genetic variants from multiple genes and pathways on the risk of premature coronary artery disease.
        Am Heart J. 2010; 160: 250-256
        • Ripatti S.
        • Tikkanen E.
        • Orho-Melander M.
        • Havulinna A.S.
        • Silander K.
        • Sharma A.
        • et al.
        A multilocus genetic risk score for coronary heart disease: case-control and prospective cohort analyses.
        Lancet. 2010; 376: 1393-1400
        • Andreassi M.G.
        • Adlerstein D.
        • Carpeggiani C.
        • Shehi E.
        • Fantinato S.
        • Ghezzi E.
        • et al.
        Individual and summed effects of high-risk genetic polymorphisms on recurrent cardiovascular events following ischemic heart disease.
        Atherosclerosis. 2012; 223: 409-415
        • Nakagawa S.
        A farewell to Bonferroni: the problems of low statistical power and publication bias.
        Behav Ecol. 2004; 15: 1044-1045
        • Balding D.J.
        A tutorial on statistical methods for population association studies.
        Nat Rev Genet. 2006; 7: 781-791
        • Lusis A.J.
        • Fogelman A.M.
        • Fonarow G.C.
        Genetic basis of atherosclerosis: part I: new genes and pathways.
        Circulation. 2004; 110: 1868-1873
        • Lusis A.J.
        • Fogelman A.M.
        • Fonarow G.C.
        Genetic basis of atherosclerosis: part II: clinical implications.
        Circulation. 2004; 110: 2066-2671
        • Chanock S.J.
        • Manolio T.
        • Boehnke M.
        • Boerwinkle E.
        • Hunter D.J.
        • Boerwinkle E.
        • et al.
        Replicating genotype-phenotype associations.
        Nature. 2007; 447: 655-660
        • Yamada Y.
        • Izawa H.
        • Ichihara S.
        • Takatsu F.
        • Ishihara H.
        • Hirayama H.
        • et al.
        Prediction of the risk of myocardial infarction from polymorphisms in candidate genes.
        N Engl J Med. 2002; 347: 1916-1923
        • Tobin M.D.
        • Braund P.S.
        • Burton P.R.
        • Thompson J.R.
        • Steeds R.
        • Channer K.
        • et al.
        Genotypes and haplotypes predisposing to myocardial infarction: a multilocus case-control study.
        Eur Heart J. 2004; 25: 459-467
        • Jones C.B.
        • Sane D.C.
        • Herrington D.M.
        Matrix metalloproteinases: a review on their structure and role in acute coronary syndrome.
        Cardiovasc Res. 2003; 59: 812-823
        • Newby A.C.
        Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture.
        Physiol Rev. 2005; 85: 1-31
        • Ye S.
        Influence of matrix metalloproteinase genotype on cardiovascular disease susceptibility and outcome.
        Cardiovasc Res. 2006; 69: 636-645
        • Terashima M.
        • Akita H.
        • Kanazawa K.
        • Inoue N.
        • Yamada S.
        • Ito K.
        • et al.
        Stromelysin promoter 5A/6A polymorphism is associated with acute myocardial infarction.
        Circulation. 1999; 99: 2717-2719
        • Humphries S.E.
        • Luong L.-A.
        • Talmud P.J.
        • Frick M.H.
        • Kesäniemi Y.A.
        • Pasternack A.
        • et al.
        The 5A/6A polymorphism in the promoter of the stromelysin-1 (MMP-3) gene predicts progression of angiographically determined coronary artery disease in men in the LOCAT gemfibrozil study.
        Atherosclerosis. 1998; 139: 49-56
        • Dalepiane V.L.N.
        • Silvello D.N.
        • Paludo C.A.
        • Roisenberg I.
        • Simon D.
        Matrix metalloproteinase polymorphisms in patients with coronary artery disease.
        Genet Mol Biol. 2008; 30: 505-510
        • Koch W.
        • de Waha A.
        • Hoppmann P.
        • Schömig A.
        • Kastrati Al
        Haplotypes and 5A/6A polymorphism of the matrix metalloproteinase-3 gene in coronary disease: case-control study and a meta-analysis.
        Atherosclerosis. 2010; 208: 171-176
        • Tedder T.F.
        • Steeber D.A.
        • Chen A.
        • Engel P.
        The selectins: vascular adhesion molecules.
        FASEB J. 1995; 9: 866-873
        • Cherian P.
        • Hankey G.J.
        • Eikelboom J.W.
        • Thom J.
        • Baker R.I.
        • McQuillan A.
        • et al.
        Endothelial and platelet activation in acute ischemic stroke and its etiological subtypes.
        Stroke. 2003; 34: 2132-2137
        • Wenzel K.
        • Stahn R.
        • Speer A.
        • Denner K.
        • Glaser C.
        • Affeldt M.
        • et al.
        Functional characterization of atherosclerosis-associated Ser128Arg and Leu554Phe E-selectin mutations.
        Biol Chem. 1999; 380: 661-667
        • Burton P.R.
        • Clayton D.G.
        • Cardon L.R.
        • Craddock N.
        • Deloukas P.
        • Tobin M.D.
        • et al.
        Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.
        Nature. 2007; 447: 661-678
        • Samani N.J.
        • Erdmann J.
        • Hall A.S.
        • Hengstenberg C.
        • Mangino M.
        • Mayer B.
        • et al.
        Genomewide association analysis of coronary artery disease.
        N Engl J Med. 2007; 357: 443-453
        • Kathiresan S.
        • Voight B.F.
        • Purcell S.
        • Musunuru K.
        • Ardissino D.
        • Mannucci P.M.
        • et al.
        Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants.
        Nat Genet. 2009; 41: 334-341
        • Shen G.Q.
        • Rao S.
        • Martinelli N.
        • Li L.
        • Olivieri O.
        • Corrocher R.
        • et al.
        Association between four SNPs on chromosome 9p21 and myocardial infarction is replicated in an Italian population.
        J Hum Genet. 2008; 53: 144-150
        • Helgadottir A.
        • Thorleifsson G.
        • Magnusson K.P.
        • Grétarsdottir S.
        • Steinthorsdottir V.
        • Manolescu A.
        • et al.
        The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm.
        Nat Genet. 2008; 40: 217-224
        • Shen G.Q.
        • Li L.
        • Rao S.
        • Abdullah K.G.
        • Ban J.M.
        • Lee B.S.
        • et al.
        Four SNPs on chromosome 9p21 in a South Korean population implicate a genetic locus that confers high cross-race risk for development of coronary artery disease.
        Arterioscler Thromb Vasc Biol. 2008; 28: 360-365
        • Schunkert H.
        • Götz A.
        • Braund P.
        • McGinnis R.
        • Tregouet D.A.
        • Mangino M.
        • et al.
        Repeated replication and a prospective meta-analysis of the association between chromosome 9p21.3 and coronary artery disease.
        Circulation. 2008; 117: 1675-1684
        • Assimes T.L.
        • Knowles J.W.
        • Basu A.
        • Iribarren C.
        • Southwick A.
        • Tang H.
        • et al.
        Susceptibility locus for clinical and subclinical coronary artery disease at chromosome 9p21 in the multi-ethnic ADVANCE study.
        Hum Mol Genet. 2008; 17: 2320-2328
        • McPherson R.
        • Pertsemlidis A.
        • Kavaslar N.
        • Stewart A.
        • Roberts R.
        • Cox D.R.
        • et al.
        A common allele on chromosome 9 associated with coronary heart disease.
        Science. 2007; 316: 1488-1491
        • Horne B.D.
        • Carlquist J.F.
        • Muhlestein J.B.
        • Bair T.L.
        • Anderson J.L.
        Association of variation in the chromosome 9p21 locus with myocardial infarction versus chronic coronary artery disease.
        Circ Cardiovasc Genet. 2008; 1: 85-92
        • Anderson J.L.
        • Horne B.D.
        • Kolek M.J.
        • Muhlestein J.B.
        • Mower C.P.
        • Park J.J.
        • et al.
        Genetic variation at the 9p21 locus predicts angiographic coronary artery disease prevalence but not extent and has clinical utility.
        Am Heart J. 2008; 156: 1155-1162
        • Goldstein D.B.
        Common genetic variation and human traits.
        N Engl J Med. 2009; 360: 1696-1698
        • Kraft P.
        • Hunter D.J.
        Genetic risk prediction—are we there yet?.
        N Engl J Med. 2009; 360: 1701-1703
        • Lander E.S.
        The new genomics: global views of biology.
        Science. 1996; 274: 536-539
        • Morrison A.C.
        • Bare L.A.
        • Chambless L.E.
        • Ellis S.G.
        • Mallon M.
        • Kane J.P.
        • et al.
        Prediction of coronary heart disease risk using a genetic risk score: the Atherosclerosis Risk in Communities Study.
        Am J Epidemiol. 2007; 166: 28-35
        • Humphries S.E.
        • Cooper J.A.
        • Talmud P.A.
        • Miller G.J.
        Candidate gene genotypes, along with conventional risk factor assessment, improve estimation of coronary heart disease risk in healthy UK men.
        Clin Chem. 2007; 53: 8e16
        • Kathiresan S.
        • Melander O.
        • Anevski D.
        • Guiducci C.
        • Burtt N.P.
        • Roos C.
        • et al.
        Polymorphisms associated with cholesterol and risk of cardiovascular events.
        N Engl J Med. 2008; 358: 1240-1249
        • Trichopoulou A.
        • Yiannakouris N.
        • Bamia C.
        • Benetou V.
        • Trichopoulos D.
        • Ordovas J.M.
        Genetic predisposition, nongenetic risk factors, and coronary infarct.
        Arch Intern Med. 2008; 168: 891e6
        • Junyent M.
        • Tucker K.L.
        • Shen J.
        • Lee Y.C.
        • Smith C.E.
        • Mattei J.
        • et al.
        A composite scoring of genotypes discriminates coronary heart disease risk beyond conventional risk factors in the Boston Puerto Rican health study.
        Nutr Metab Cardiovasc Dis. 2010; 20: 157e64
        • Lluis-Ganella C.
        • Subirana I.
        • Lucas G.
        • Tomás M.
        • Muñoz D.
        • Sentí M.
        • et al.
        Assessment of the value of a genetic risk score in improving the estimation of coronary risk.
        Atherosclerosis. 2012; 222: 456-463